File size: 3,718 Bytes
9346f1c
8b28d2b
9346f1c
4596a70
2a5f9fb
 
1ffc326
8c49cb6
 
 
 
 
 
 
976f398
df66f6e
 
 
 
 
 
 
 
37b74a1
 
 
 
 
 
 
 
 
2f420b7
8c49cb6
2a73469
10f9b3c
50df158
d084b26
37b74a1
8b28d2b
d084b26
046ddc7
d084b26
37b74a1
 
 
 
 
 
d084b26
 
 
 
 
 
37b74a1
 
 
 
 
 
d084b26
 
 
26286b2
a885f09
d9f262c
2a73469
614ee1f
dd084c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b28d2b
dd084c3
 
7644705
01233b7
 
58733e4
6e8f400
10f9b3c
8cb7546
982779d
8b28d2b
f2bc0a5
613696b
6e8f400
0227006
046ddc7
 
 
 
 
 
 
 
 
d16cee2
10f9b3c
a2790cb
10f9b3c
37b74a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    fields,
)
from src.envs import (
    API,
    EVAL_DETAILED_RESULTS_PATH,
    EVAL_RESULTS_PATH,
    EVAL_DETAILED_RESULTS_REPO,
    REPO_ID,
    RESULTS_REPO,
    TOKEN,
)
from src.populate import get_leaderboard_df


def restart_space():
    API.restart_space(repo_id=REPO_ID)


### Space initialisation
try:
    print(EVAL_DETAILED_RESULTS_REPO)
    snapshot_download(
        repo_id=EVAL_DETAILED_RESULTS_REPO,
        local_dir=EVAL_DETAILED_RESULTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO,
        local_dir=EVAL_RESULTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(RESULTS_REPO)


def init_leaderboard(dataframes):
    if dataframes is None or not dataframes:
        raise ValueError("Leaderboard data is empty or None.")
    
    def create_leaderboard(df):
        return Leaderboard(
            value=df,
            datatype=[c.type for c in fields(AutoEvalColumn)],
            select_columns=SelectColumns(
                default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
                cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
                label="Select Columns to Display:",
            ),
            search_columns=[AutoEvalColumn.model.name],
            hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
            filter_columns=[],
            interactive=False,
        )
    
    subset_names = list(dataframes.keys())
    selected_subset = gr.Dropdown(choices=subset_names, label="Select Dataset Subset", value=subset_names[0])
    
    leaderboard = gr.Dynamic(create_leaderboard, inputs=[selected_subset], outputs="output")
    selected_subset.change(
        fn=lambda x: create_leaderboard(dataframes[x]),
        inputs=[selected_subset],
        outputs=leaderboard
    )
    
    return leaderboard

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LiveBench Results", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

    # with gr.Row():
    #     with gr.Accordion("πŸ“™ Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()