Spaces:
Running
Running
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
fields, | |
) | |
from src.envs import ( | |
API, | |
EVAL_DETAILED_RESULTS_PATH, | |
EVAL_RESULTS_PATH, | |
EVAL_DETAILED_RESULTS_REPO, | |
REPO_ID, | |
RESULTS_REPO, | |
TOKEN, | |
) | |
from src.populate import get_leaderboard_df | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
try: | |
print(EVAL_DETAILED_RESULTS_REPO) | |
snapshot_download( | |
repo_id=EVAL_DETAILED_RESULTS_REPO, | |
local_dir=EVAL_DETAILED_RESULTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN, | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, | |
local_dir=EVAL_RESULTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN, | |
) | |
except Exception: | |
restart_space() | |
LEADERBOARD_DF = get_leaderboard_df(RESULTS_REPO, EVAL_RESULTS_PATH) | |
def init_leaderboard(dataframes): | |
if dataframes is None or not dataframes: | |
raise ValueError("Leaderboard data is empty or None.") | |
def create_leaderboard(df): | |
return Leaderboard( | |
value=df, | |
datatype=[c.type for c in fields(AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[AutoEvalColumn.model.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
filter_columns=[], | |
interactive=False, | |
) | |
subset_names = list(dataframes.keys()) | |
selected_subset = gr.Dropdown(choices=subset_names, label="Select Dataset Subset", value=subset_names[0]) | |
leaderboard = gr.Dynamic(create_leaderboard, inputs=[selected_subset], outputs="output") | |
selected_subset.change( | |
fn=lambda x: create_leaderboard(dataframes[x]), | |
inputs=[selected_subset], | |
outputs=leaderboard | |
) | |
return leaderboard | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π LiveBench Results", elem_id="llm-benchmark-tab-table", id=0): | |
leaderboard = init_leaderboard(LEADERBOARD_DF) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
# with gr.Row(): | |
# with gr.Accordion("π Citation", open=False): | |
# citation_button = gr.Textbox( | |
# value=CITATION_BUTTON_TEXT, | |
# label=CITATION_BUTTON_LABEL, | |
# lines=20, | |
# elem_id="citation-button", | |
# show_copy_button=True, | |
# ) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() | |