import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, fields, ) from src.envs import ( API, EVAL_DETAILED_RESULTS_PATH, EVAL_RESULTS_PATH, EVAL_DETAILED_RESULTS_REPO, REPO_ID, RESULTS_REPO, TOKEN, ) from src.populate import get_leaderboard_df def restart_space(): API.restart_space(repo_id=REPO_ID) ### Space initialisation try: print(EVAL_DETAILED_RESULTS_REPO) snapshot_download( repo_id=EVAL_DETAILED_RESULTS_REPO, local_dir=EVAL_DETAILED_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN, ) except Exception: restart_space() try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN, ) except Exception: restart_space() LEADERBOARD_DF = get_leaderboard_df(RESULTS_REPO, EVAL_RESULTS_PATH) def init_leaderboard(dataframes): if dataframes is None or not dataframes: raise ValueError("Leaderboard data is empty or None.") def create_leaderboard(df): return Leaderboard( value=df, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=SelectColumns( default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], label="Select Columns to Display:", ), search_columns=[AutoEvalColumn.model.name], hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], filter_columns=[], interactive=False, ) subset_names = list(dataframes.keys()) selected_subset = gr.Dropdown(choices=subset_names, label="Select Dataset Subset", value=subset_names[0]) leaderboard = gr.Dynamic(create_leaderboard, inputs=[selected_subset], outputs="output") selected_subset.change( fn=lambda x: create_leaderboard(dataframes[x]), inputs=[selected_subset], outputs=leaderboard ) return leaderboard demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LiveBench Results", elem_id="llm-benchmark-tab-table", id=0): leaderboard = init_leaderboard(LEADERBOARD_DF) with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") # with gr.Row(): # with gr.Accordion("📙 Citation", open=False): # citation_button = gr.Textbox( # value=CITATION_BUTTON_TEXT, # label=CITATION_BUTTON_LABEL, # lines=20, # elem_id="citation-button", # show_copy_button=True, # ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()