File size: 240,198 Bytes
dfe37be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
[
    {
        "task_id": "HumanEval/0",
        "prompt": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n    \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n    given threshold.\n    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n    False\n    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n    True\n    \"\"\"\n",
        "entry_point": "has_close_elements",
        "canonical_solution": "    for idx, elem in enumerate(numbers):\n        for idx2, elem2 in enumerate(numbers):\n            if idx != idx2:\n                distance = abs(elem - elem2)\n                if distance < threshold:\n                    return True\n\n    return False\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n    assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n    assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n    assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False\n    assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True\n    assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True\n    assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False\n\n",
        "line": 12,
        "token": 86,
        "cyclomatic_complexity": 5,
        "id": 0
    },
    {
        "task_id": "HumanEval/1",
        "prompt": "from typing import List\n\n\ndef separate_paren_groups(paren_string: str) -> List[str]:\n    \"\"\" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to\n    separate those group into separate strings and return the list of those.\n    Separate groups are balanced (each open brace is properly closed) and not nested within each other\n    Ignore any spaces in the input string.\n    >>> separate_paren_groups('( ) (( )) (( )( ))')\n    ['()', '(())', '(()())']\n    \"\"\"\n",
        "entry_point": "separate_paren_groups",
        "canonical_solution": "    result = []\n    current_string = []\n    current_depth = 0\n\n    for c in paren_string:\n        if c == '(':\n            current_depth += 1\n            current_string.append(c)\n        elif c == ')':\n            current_depth -= 1\n            current_string.append(c)\n\n            if current_depth == 0:\n                result.append(''.join(current_string))\n                current_string.clear()\n\n    return result\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('(()()) ((())) () ((())()())') == [\n        '(()())', '((()))', '()', '((())()())'\n    ]\n    assert candidate('() (()) ((())) (((())))') == [\n        '()', '(())', '((()))', '(((())))'\n    ]\n    assert candidate('(()(())((())))') == [\n        '(()(())((())))'\n    ]\n    assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n",
        "line": 12,
        "token": 123,
        "cyclomatic_complexity": 5,
        "id": 1
    },
    {
        "task_id": "HumanEval/2",
        "prompt": "\n\ndef truncate_number(number: float) -> float:\n    \"\"\" Given a positive floating point number, it can be decomposed into\n    and integer part (largest integer smaller than given number) and decimals\n    (leftover part always smaller than 1).\n\n    Return the decimal part of the number.\n    >>> truncate_number(3.5)\n    0.5\n    \"\"\"\n",
        "entry_point": "truncate_number",
        "canonical_solution": "    return number % 1.0\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate(3.5) == 0.5\n    assert abs(candidate(1.33) - 0.33) < 1e-6\n    assert abs(candidate(123.456) - 0.456) < 1e-6\n",
        "line": 12,
        "token": 67,
        "cyclomatic_complexity": 1,
        "id": 2
    },
    {
        "task_id": "HumanEval/3",
        "prompt": "from typing import List\n\n\ndef below_zero(operations: List[int]) -> bool:\n    \"\"\" You're given a list of deposit and withdrawal operations on a bank account that starts with\n    zero balance. Your task is to detect if at any point the balance of account fallls below zero, and\n    at that point function should return True. Otherwise it should return False.\n    >>> below_zero([1, 2, 3])\n    False\n    >>> below_zero([1, 2, -4, 5])\n    True\n    \"\"\"\n",
        "entry_point": "below_zero",
        "canonical_solution": "    balance = 0\n\n    for op in operations:\n        balance += op\n        if balance < 0:\n            return True\n\n    return False\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == False\n    assert candidate([1, 2, -3, 1, 2, -3]) == False\n    assert candidate([1, 2, -4, 5, 6]) == True\n    assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False\n    assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True\n    assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True\n",
        "line": 13,
        "token": 106,
        "cyclomatic_complexity": 3,
        "id": 3
    },
    {
        "task_id": "HumanEval/4",
        "prompt": "from typing import List\n\n\ndef mean_absolute_deviation(numbers: List[float]) -> float:\n    \"\"\" For a given list of input numbers, calculate Mean Absolute Deviation\n    around the mean of this dataset.\n    Mean Absolute Deviation is the average absolute difference between each\n    element and a centerpoint (mean in this case):\n    MAD = average | x - x_mean |\n    >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0])\n    1.0\n    \"\"\"\n",
        "entry_point": "mean_absolute_deviation",
        "canonical_solution": "    mean = sum(numbers) / len(numbers)\n    return sum(abs(x - mean) for x in numbers) / len(numbers)\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6\n    assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6\n    assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6\n\n",
        "line": 13,
        "token": 88,
        "cyclomatic_complexity": 2,
        "id": 4
    },
    {
        "task_id": "HumanEval/5",
        "prompt": "from typing import List\n\n\ndef intersperse(numbers: List[int], delimeter: int) -> List[int]:\n    \"\"\" Insert a number 'delimeter' between every two consecutive elements of input list `numbers'\n    >>> intersperse([], 4)\n    []\n    >>> intersperse([1, 2, 3], 4)\n    [1, 4, 2, 4, 3]\n    \"\"\"\n",
        "entry_point": "intersperse",
        "canonical_solution": "    if not numbers:\n        return []\n\n    result = []\n\n    for n in numbers[:-1]:\n        result.append(n)\n        result.append(delimeter)\n\n    result.append(numbers[-1])\n\n    return result\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([], 7) == []\n    assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2]\n    assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2]\n",
        "line": 11,
        "token": 84,
        "cyclomatic_complexity": 3,
        "id": 5
    },
    {
        "task_id": "HumanEval/6",
        "prompt": "from typing import List\n\n\ndef parse_nested_parens(paren_string: str) -> List[int]:\n    \"\"\" Input to this function is a string represented multiple groups for nested parentheses separated by spaces.\n    For each of the group, output the deepest level of nesting of parentheses.\n    E.g. (()()) has maximum two levels of nesting while ((())) has three.\n\n    >>> parse_nested_parens('(()()) ((())) () ((())()())')\n    [2, 3, 1, 3]\n    \"\"\"\n",
        "entry_point": "parse_nested_parens",
        "canonical_solution": "    def parse_paren_group(s):\n        depth = 0\n        max_depth = 0\n        for c in s:\n            if c == '(':\n                depth += 1\n                max_depth = max(depth, max_depth)\n            else:\n                depth -= 1\n\n        return max_depth\n\n    return [parse_paren_group(x) for x in paren_string.split(' ') if x]\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3]\n    assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4]\n    assert candidate('(()(())((())))') == [4]\n",
        "line": 12,
        "token": 121,
        "cyclomatic_complexity": 3,
        "id": 6
    },
    {
        "task_id": "HumanEval/7",
        "prompt": "from typing import List\n\n\ndef filter_by_substring(strings: List[str], substring: str) -> List[str]:\n    \"\"\" Filter an input list of strings only for ones that contain given substring\n    >>> filter_by_substring([], 'a')\n    []\n    >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a')\n    ['abc', 'bacd', 'array']\n    \"\"\"\n",
        "entry_point": "filter_by_substring",
        "canonical_solution": "    return [x for x in strings if substring in x]\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([], 'john') == []\n    assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']\n    assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx']\n    assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune']\n",
        "line": 11,
        "token": 91,
        "cyclomatic_complexity": 3,
        "id": 7
    },
    {
        "task_id": "HumanEval/8",
        "prompt": "from typing import List, Tuple\n\n\ndef sum_product(numbers: List[int]) -> Tuple[int, int]:\n    \"\"\" For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.\n    Empty sum should be equal to 0 and empty product should be equal to 1.\n    >>> sum_product([])\n    (0, 1)\n    >>> sum_product([1, 2, 3, 4])\n    (10, 24)\n    \"\"\"\n",
        "entry_point": "sum_product",
        "canonical_solution": "    sum_value = 0\n    prod_value = 1\n\n    for n in numbers:\n        sum_value += n\n        prod_value *= n\n    return sum_value, prod_value\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == (0, 1)\n    assert candidate([1, 1, 1]) == (3, 1)\n    assert candidate([100, 0]) == (100, 0)\n    assert candidate([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7)\n    assert candidate([10]) == (10, 10)\n",
        "line": 12,
        "token": 105,
        "cyclomatic_complexity": 2,
        "id": 8
    },
    {
        "task_id": "HumanEval/9",
        "prompt": "from typing import List, Tuple\n\n\ndef rolling_max(numbers: List[int]) -> List[int]:\n    \"\"\" From a given list of integers, generate a list of rolling maximum element found until given moment\n    in the sequence.\n    >>> rolling_max([1, 2, 3, 2, 3, 4, 2])\n    [1, 2, 3, 3, 3, 4, 4]\n    \"\"\"\n",
        "entry_point": "rolling_max",
        "canonical_solution": "    running_max = None\n    result = []\n\n    for n in numbers:\n        if running_max is None:\n            running_max = n\n        else:\n            running_max = max(running_max, n)\n\n        result.append(running_max)\n\n    return result\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == []\n    assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4]\n    assert candidate([4, 3, 2, 1]) == [4, 4, 4, 4]\n    assert candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]\n",
        "line": 10,
        "token": 87,
        "cyclomatic_complexity": 3,
        "id": 9
    },
    {
        "task_id": "HumanEval/10",
        "prompt": "\n\ndef is_palindrome(string: str) -> bool:\n    \"\"\" Test if given string is a palindrome \"\"\"\n    return string == string[::-1]\n\n\ndef make_palindrome(string: str) -> str:\n    \"\"\" Find the shortest palindrome that begins with a supplied string.\n    Algorithm idea is simple:\n    - Find the longest postfix of supplied string that is a palindrome.\n    - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.\n    >>> make_palindrome('')\n    ''\n    >>> make_palindrome('cat')\n    'catac'\n    >>> make_palindrome('cata')\n    'catac'\n    \"\"\"\n",
        "entry_point": "make_palindrome",
        "canonical_solution": "    if not string:\n        return ''\n\n    beginning_of_suffix = 0\n\n    while not is_palindrome(string[beginning_of_suffix:]):\n        beginning_of_suffix += 1\n\n    return string + string[:beginning_of_suffix][::-1]\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == ''\n    assert candidate('x') == 'x'\n    assert candidate('xyz') == 'xyzyx'\n    assert candidate('xyx') == 'xyx'\n    assert candidate('jerry') == 'jerryrrej'\n",
        "line": 20,
        "token": 124,
        "cyclomatic_complexity": 1,
        "id": 10
    },
    {
        "task_id": "HumanEval/11",
        "prompt": "from typing import List\n\n\ndef string_xor(a: str, b: str) -> str:\n    \"\"\" Input are two strings a and b consisting only of 1s and 0s.\n    Perform binary XOR on these inputs and return result also as a string.\n    >>> string_xor('010', '110')\n    '100'\n    \"\"\"\n",
        "entry_point": "string_xor",
        "canonical_solution": "    def xor(i, j):\n        if i == j:\n            return '0'\n        else:\n            return '1'\n\n    return ''.join(xor(x, y) for x, y in zip(a, b))\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('111000', '101010') == '010010'\n    assert candidate('1', '1') == '0'\n    assert candidate('0101', '0000') == '0101'\n",
        "line": 10,
        "token": 65,
        "cyclomatic_complexity": 2,
        "id": 11
    },
    {
        "task_id": "HumanEval/12",
        "prompt": "from typing import List, Optional\n\n\ndef longest(strings: List[str]) -> Optional[str]:\n    \"\"\" Out of list of strings, return the longest one. Return the first one in case of multiple\n    strings of the same length. Return None in case the input list is empty.\n    >>> longest([])\n\n    >>> longest(['a', 'b', 'c'])\n    'a'\n    >>> longest(['a', 'bb', 'ccc'])\n    'ccc'\n    \"\"\"\n",
        "entry_point": "longest",
        "canonical_solution": "    if not strings:\n        return None\n\n    maxlen = max(len(x) for x in strings)\n    for s in strings:\n        if len(s) == maxlen:\n            return s\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == None\n    assert candidate(['x', 'y', 'z']) == 'x'\n    assert candidate(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz'\n",
        "line": 14,
        "token": 111,
        "cyclomatic_complexity": 5,
        "id": 12
    },
    {
        "task_id": "HumanEval/13",
        "prompt": "\n\ndef greatest_common_divisor(a: int, b: int) -> int:\n    \"\"\" Return a greatest common divisor of two integers a and b\n    >>> greatest_common_divisor(3, 5)\n    1\n    >>> greatest_common_divisor(25, 15)\n    5\n    \"\"\"\n",
        "entry_point": "greatest_common_divisor",
        "canonical_solution": "    while b:\n        a, b = b, a % b\n    return a\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate(3, 7) == 1\n    assert candidate(10, 15) == 5\n    assert candidate(49, 14) == 7\n    assert candidate(144, 60) == 12\n",
        "line": 10,
        "token": 52,
        "cyclomatic_complexity": 2,
        "id": 13
    },
    {
        "task_id": "HumanEval/14",
        "prompt": "from typing import List\n\n\ndef all_prefixes(string: str) -> List[str]:\n    \"\"\" Return list of all prefixes from shortest to longest of the input string\n    >>> all_prefixes('abc')\n    ['a', 'ab', 'abc']\n    \"\"\"\n",
        "entry_point": "all_prefixes",
        "canonical_solution": "    result = []\n\n    for i in range(len(string)):\n        result.append(string[:i+1])\n    return result\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == []\n    assert candidate('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh']\n    assert candidate('WWW') == ['W', 'WW', 'WWW']\n",
        "line": 9,
        "token": 56,
        "cyclomatic_complexity": 2,
        "id": 14
    },
    {
        "task_id": "HumanEval/15",
        "prompt": "\n\ndef string_sequence(n: int) -> str:\n    \"\"\" Return a string containing space-delimited numbers starting from 0 upto n inclusive.\n    >>> string_sequence(0)\n    '0'\n    >>> string_sequence(5)\n    '0 1 2 3 4 5'\n    \"\"\"\n",
        "entry_point": "string_sequence",
        "canonical_solution": "    return ' '.join([str(x) for x in range(n + 1)])\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate(0) == '0'\n    assert candidate(3) == '0 1 2 3'\n    assert candidate(10) == '0 1 2 3 4 5 6 7 8 9 10'\n",
        "line": 10,
        "token": 53,
        "cyclomatic_complexity": 2,
        "id": 15
    },
    {
        "task_id": "HumanEval/16",
        "prompt": "\n\ndef count_distinct_characters(string: str) -> int:\n    \"\"\" Given a string, find out how many distinct characters (regardless of case) does it consist of\n    >>> count_distinct_characters('xyzXYZ')\n    3\n    >>> count_distinct_characters('Jerry')\n    4\n    \"\"\"\n",
        "entry_point": "count_distinct_characters",
        "canonical_solution": "    return len(set(string.lower()))\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == 0\n    assert candidate('abcde') == 5\n    assert candidate('abcde' + 'cade' + 'CADE') == 5\n    assert candidate('aaaaAAAAaaaa') == 1\n    assert candidate('Jerry jERRY JeRRRY') == 5\n",
        "line": 10,
        "token": 54,
        "cyclomatic_complexity": 1,
        "id": 16
    },
    {
        "task_id": "HumanEval/17",
        "prompt": "from typing import List\n\n\ndef parse_music(music_string: str) -> List[int]:\n    \"\"\" Input to this function is a string representing musical notes in a special ASCII format.\n    Your task is to parse this string and return list of integers corresponding to how many beats does each\n    not last.\n\n    Here is a legend:\n    'o' - whole note, lasts four beats\n    'o|' - half note, lasts two beats\n    '.|' - quater note, lasts one beat\n\n    >>> parse_music('o o| .| o| o| .| .| .| .| o o')\n    [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]\n    \"\"\"\n",
        "entry_point": "parse_music",
        "canonical_solution": "    note_map = {'o': 4, 'o|': 2, '.|': 1}\n    return [note_map[x] for x in music_string.split(' ') if x]\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == []\n    assert candidate('o o o o') == [4, 4, 4, 4]\n    assert candidate('.| .| .| .|') == [1, 1, 1, 1]\n    assert candidate('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4]\n    assert candidate('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2]\n",
        "line": 17,
        "token": 138,
        "cyclomatic_complexity": 3,
        "id": 17
    },
    {
        "task_id": "HumanEval/18",
        "prompt": "\n\ndef how_many_times(string: str, substring: str) -> int:\n    \"\"\" Find how many times a given substring can be found in the original string. Count overlaping cases.\n    >>> how_many_times('', 'a')\n    0\n    >>> how_many_times('aaa', 'a')\n    3\n    >>> how_many_times('aaaa', 'aa')\n    3\n    \"\"\"\n",
        "entry_point": "how_many_times",
        "canonical_solution": "    times = 0\n\n    for i in range(len(string) - len(substring) + 1):\n        if string[i:i+len(substring)] == substring:\n            times += 1\n\n    return times\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('', 'x') == 0\n    assert candidate('xyxyxyx', 'x') == 4\n    assert candidate('cacacacac', 'cac') == 4\n    assert candidate('john doe', 'john') == 1\n",
        "line": 12,
        "token": 77,
        "cyclomatic_complexity": 3,
        "id": 18
    },
    {
        "task_id": "HumanEval/19",
        "prompt": "from typing import List\n\n\ndef sort_numbers(numbers: str) -> str:\n    \"\"\" Input is a space-delimited string of numberals from 'zero' to 'nine'.\n    Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.\n    Return the string with numbers sorted from smallest to largest\n    >>> sort_numbers('three one five')\n    'one three five'\n    \"\"\"\n",
        "entry_point": "sort_numbers",
        "canonical_solution": "    value_map = {\n        'zero': 0,\n        'one': 1,\n        'two': 2,\n        'three': 3,\n        'four': 4,\n        'five': 5,\n        'six': 6,\n        'seven': 7,\n        'eight': 8,\n        'nine': 9\n    }\n    return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == ''\n    assert candidate('three') == 'three'\n    assert candidate('three five nine') == 'three five nine'\n    assert candidate('five zero four seven nine eight') == 'zero four five seven eight nine'\n    assert candidate('six five four three two one zero') == 'zero one two three four five six'\n",
        "line": 11,
        "token": 91,
        "cyclomatic_complexity": 3,
        "id": 19
    },
    {
        "task_id": "HumanEval/20",
        "prompt": "from typing import List, Tuple\n\n\ndef find_closest_elements(numbers: List[float]) -> Tuple[float, float]:\n    \"\"\" From a supplied list of numbers (of length at least two) select and return two that are the closest to each\n    other and return them in order (smaller number, larger number).\n    >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])\n    (2.0, 2.2)\n    >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])\n    (2.0, 2.0)\n    \"\"\"\n",
        "entry_point": "find_closest_elements",
        "canonical_solution": "    closest_pair = None\n    distance = None\n\n    for idx, elem in enumerate(numbers):\n        for idx2, elem2 in enumerate(numbers):\n            if idx != idx2:\n                if distance is None:\n                    distance = abs(elem - elem2)\n                    closest_pair = tuple(sorted([elem, elem2]))\n                else:\n                    new_distance = abs(elem - elem2)\n                    if new_distance < distance:\n                        distance = new_distance\n                        closest_pair = tuple(sorted([elem, elem2]))\n\n    return closest_pair\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)\n    assert candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)\n    assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)\n    assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)\n    assert candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)\n\n",
        "line": 12,
        "token": 116,
        "cyclomatic_complexity": 6,
        "id": 20
    },
    {
        "task_id": "HumanEval/21",
        "prompt": "from typing import List\n\n\ndef rescale_to_unit(numbers: List[float]) -> List[float]:\n    \"\"\" Given list of numbers (of at least two elements), apply a linear transform to that list,\n    such that the smallest number will become 0 and the largest will become 1\n    >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])\n    [0.0, 0.25, 0.5, 0.75, 1.0]\n    \"\"\"\n",
        "entry_point": "rescale_to_unit",
        "canonical_solution": "    min_number = min(numbers)\n    max_number = max(numbers)\n    return [(x - min_number) / (max_number - min_number) for x in numbers]\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([2.0, 49.9]) == [0.0, 1.0]\n    assert candidate([100.0, 49.9]) == [1.0, 0.0]\n    assert candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]\n    assert candidate([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]\n    assert candidate([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]\n",
        "line": 10,
        "token": 89,
        "cyclomatic_complexity": 2,
        "id": 21
    },
    {
        "task_id": "HumanEval/22",
        "prompt": "from typing import List, Any\n\n\ndef filter_integers(values: List[Any]) -> List[int]:\n    \"\"\" Filter given list of any python values only for integers\n    >>> filter_integers(['a', 3.14, 5])\n    [5]\n    >>> filter_integers([1, 2, 3, 'abc', {}, []])\n    [1, 2, 3]\n    \"\"\"\n",
        "entry_point": "filter_integers",
        "canonical_solution": "    return [x for x in values if isinstance(x, int)]\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == []\n    assert candidate([4, {}, [], 23.2, 9, 'adasd']) == [4, 9]\n    assert candidate([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3]\n",
        "line": 11,
        "token": 86,
        "cyclomatic_complexity": 3,
        "id": 22
    },
    {
        "task_id": "HumanEval/23",
        "prompt": "\n\ndef strlen(string: str) -> int:\n    \"\"\" Return length of given string\n    >>> strlen('')\n    0\n    >>> strlen('abc')\n    3\n    \"\"\"\n",
        "entry_point": "strlen",
        "canonical_solution": "    return len(string)\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == 0\n    assert candidate('x') == 1\n    assert candidate('asdasnakj') == 9\n",
        "line": 10,
        "token": 39,
        "cyclomatic_complexity": 1,
        "id": 23
    },
    {
        "task_id": "HumanEval/24",
        "prompt": "\n\ndef largest_divisor(n: int) -> int:\n    \"\"\" For a given number n, find the largest number that divides n evenly, smaller than n\n    >>> largest_divisor(15)\n    5\n    \"\"\"\n",
        "entry_point": "largest_divisor",
        "canonical_solution": "    for i in reversed(range(n)):\n        if n % i == 0:\n            return i\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate(3) == 1\n    assert candidate(7) == 1\n    assert candidate(10) == 5\n    assert candidate(100) == 50\n    assert candidate(49) == 7\n",
        "line": 8,
        "token": 43,
        "cyclomatic_complexity": 3,
        "id": 24
    },
    {
        "task_id": "HumanEval/25",
        "prompt": "from typing import List\n\n\ndef factorize(n: int) -> List[int]:\n    \"\"\" Return list of prime factors of given integer in the order from smallest to largest.\n    Each of the factors should be listed number of times corresponding to how many times it appeares in factorization.\n    Input number should be equal to the product of all factors\n    >>> factorize(8)\n    [2, 2, 2]\n    >>> factorize(25)\n    [5, 5]\n    >>> factorize(70)\n    [2, 5, 7]\n    \"\"\"\n",
        "entry_point": "factorize",
        "canonical_solution": "    import math\n    fact = []\n    i = 2\n    while i <= int(math.sqrt(n) + 1):\n        if n % i == 0:\n            fact.append(i)\n            n //= i\n        else:\n            i += 1\n\n    if n > 1:\n        fact.append(n)\n    return fact\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate(2) == [2]\n    assert candidate(4) == [2, 2]\n    assert candidate(8) == [2, 2, 2]\n    assert candidate(3 * 19) == [3, 19]\n    assert candidate(3 * 19 * 3 * 19) == [3, 3, 19, 19]\n    assert candidate(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19]\n    assert candidate(3 * 19 * 19 * 19) == [3, 19, 19, 19]\n    assert candidate(3 * 2 * 3) == [2, 3, 3]\n",
        "line": 15,
        "token": 111,
        "cyclomatic_complexity": 4,
        "id": 25
    },
    {
        "task_id": "HumanEval/26",
        "prompt": "from typing import List\n\n\ndef remove_duplicates(numbers: List[int]) -> List[int]:\n    \"\"\" From a list of integers, remove all elements that occur more than once.\n    Keep order of elements left the same as in the input.\n    >>> remove_duplicates([1, 2, 3, 2, 4])\n    [1, 3, 4]\n    \"\"\"\n",
        "entry_point": "remove_duplicates",
        "canonical_solution": "    import collections\n    c = collections.Counter(numbers)\n    return [n for n in numbers if c[n] <= 1]\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == []\n    assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4]\n    assert candidate([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]\n",
        "line": 10,
        "token": 78,
        "cyclomatic_complexity": 3,
        "id": 26
    },
    {
        "task_id": "HumanEval/27",
        "prompt": "\n\ndef flip_case(string: str) -> str:\n    \"\"\" For a given string, flip lowercase characters to uppercase and uppercase to lowercase.\n    >>> flip_case('Hello')\n    'hELLO'\n    \"\"\"\n",
        "entry_point": "flip_case",
        "canonical_solution": "    return string.swapcase()\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate('') == ''\n    assert candidate('Hello!') == 'hELLO!'\n    assert candidate('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS'\n",
        "line": 8,
        "token": 41,
        "cyclomatic_complexity": 1,
        "id": 27
    },
    {
        "task_id": "HumanEval/28",
        "prompt": "from typing import List\n\n\ndef concatenate(strings: List[str]) -> str:\n    \"\"\" Concatenate list of strings into a single string\n    >>> concatenate([])\n    ''\n    >>> concatenate(['a', 'b', 'c'])\n    'abc'\n    \"\"\"\n",
        "entry_point": "concatenate",
        "canonical_solution": "    return ''.join(strings)\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([]) == ''\n    assert candidate(['x', 'y', 'z']) == 'xyz'\n    assert candidate(['x', 'y', 'z', 'w', 'k']) == 'xyzwk'\n",
        "line": 11,
        "token": 61,
        "cyclomatic_complexity": 1,
        "id": 28
    },
    {
        "task_id": "HumanEval/29",
        "prompt": "from typing import List\n\n\ndef filter_by_prefix(strings: List[str], prefix: str) -> List[str]:\n    \"\"\" Filter an input list of strings only for ones that start with a given prefix.\n    >>> filter_by_prefix([], 'a')\n    []\n    >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a')\n    ['abc', 'array']\n    \"\"\"\n",
        "entry_point": "filter_by_prefix",
        "canonical_solution": "    return [x for x in strings if x.startswith(prefix)]\n",
        "test": "\n\nMETADATA = {\n    'author': 'jt',\n    'dataset': 'test'\n}\n\n\ndef check(candidate):\n    assert candidate([], 'john') == []\n    assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']\n",
        "line": 11,
        "token": 91,
        "cyclomatic_complexity": 3,
        "id": 29
    },
    {
        "task_id": "HumanEval/30",
        "prompt": "\n\ndef get_positive(l: list):\n    \"\"\"Return only positive numbers in the list.\n    >>> get_positive([-1, 2, -4, 5, 6])\n    [2, 5, 6]\n    >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])\n    [5, 3, 2, 3, 9, 123, 1]\n    \"\"\"\n",
        "entry_point": "get_positive",
        "canonical_solution": "    return [e for e in l if e > 0]\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([-1, -2, 4, 5, 6]) == [4, 5, 6]\n    assert candidate([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]\n    assert candidate([-1, -2]) == []\n    assert candidate([]) == []\n\n",
        "line": 10,
        "token": 90,
        "cyclomatic_complexity": 3,
        "id": 30
    },
    {
        "task_id": "HumanEval/31",
        "prompt": "\n\ndef is_prime(n):\n    \"\"\"Return true if a given number is prime, and false otherwise.\n    >>> is_prime(6)\n    False\n    >>> is_prime(101)\n    True\n    >>> is_prime(11)\n    True\n    >>> is_prime(13441)\n    True\n    >>> is_prime(61)\n    True\n    >>> is_prime(4)\n    False\n    >>> is_prime(1)\n    False\n    \"\"\"\n",
        "entry_point": "is_prime",
        "canonical_solution": "    if n < 2:\n        return False\n    for k in range(2, n - 1):\n        if n % k == 0:\n            return False\n    return True\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(6) == False\n    assert candidate(101) == True\n    assert candidate(11) == True\n    assert candidate(13441) == True\n    assert candidate(61) == True\n    assert candidate(4) == False\n    assert candidate(1) == False\n    assert candidate(5) == True\n    assert candidate(11) == True\n    assert candidate(17) == True\n    assert candidate(5 * 17) == False\n    assert candidate(11 * 7) == False\n    assert candidate(13441 * 19) == False\n\n",
        "line": 20,
        "token": 81,
        "cyclomatic_complexity": 4,
        "id": 31
    },
    {
        "task_id": "HumanEval/32",
        "prompt": "import math\n\n\ndef poly(xs: list, x: float):\n    \"\"\"\n    Evaluates polynomial with coefficients xs at point x.\n    return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n\n    \"\"\"\n    return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)])\n\n\ndef find_zero(xs: list):\n    \"\"\" xs are coefficients of a polynomial.\n    find_zero find x such that poly(x) = 0.\n    find_zero returns only only zero point, even if there are many.\n    Moreover, find_zero only takes list xs having even number of coefficients\n    and largest non zero coefficient as it guarantees\n    a solution.\n    >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x\n    -0.5\n    >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3\n    1.0\n    \"\"\"\n",
        "entry_point": "find_zero",
        "canonical_solution": "    begin, end = -1., 1.\n    while poly(xs, begin) * poly(xs, end) > 0:\n        begin *= 2.0\n        end *= 2.0\n    while end - begin > 1e-10:\n        center = (begin + end) / 2.0\n        if poly(xs, center) * poly(xs, begin) > 0:\n            begin = center\n        else:\n            end = center\n    return begin\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    import math\n    import random\n    rng = random.Random(42)\n    import copy\n    for _ in range(100):\n        ncoeff = 2 * rng.randint(1, 4)\n        coeffs = []\n        for _ in range(ncoeff):\n            coeff = rng.randint(-10, 10)\n            if coeff == 0:\n                coeff = 1\n            coeffs.append(coeff)\n        solution = candidate(copy.deepcopy(coeffs))\n        assert math.fabs(poly(coeffs, solution)) < 1e-4\n\n",
        "line": 24,
        "token": 219,
        "cyclomatic_complexity": 2,
        "id": 32
    },
    {
        "task_id": "HumanEval/33",
        "prompt": "\n\ndef sort_third(l: list):\n    \"\"\"This function takes a list l and returns a list l' such that\n    l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal\n    to the values of the corresponding indicies of l, but sorted.\n    >>> sort_third([1, 2, 3])\n    [1, 2, 3]\n    >>> sort_third([5, 6, 3, 4, 8, 9, 2])\n    [2, 6, 3, 4, 8, 9, 5]\n    \"\"\"\n",
        "entry_point": "sort_third",
        "canonical_solution": "    l = list(l)\n    l[::3] = sorted(l[::3])\n    return l\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert tuple(candidate([1, 2, 3])) == tuple(sort_third([1, 2, 3]))\n    assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]))\n    assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10]))\n    assert tuple(candidate([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5])\n    assert tuple(candidate([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5])\n    assert tuple(candidate([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5])\n    assert tuple(candidate([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1])\n\n",
        "line": 12,
        "token": 126,
        "cyclomatic_complexity": 1,
        "id": 33
    },
    {
        "task_id": "HumanEval/34",
        "prompt": "\n\ndef unique(l: list):\n    \"\"\"Return sorted unique elements in a list\n    >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123])\n    [0, 2, 3, 5, 9, 123]\n    \"\"\"\n",
        "entry_point": "unique",
        "canonical_solution": "    return sorted(list(set(l)))\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]\n\n",
        "line": 8,
        "token": 59,
        "cyclomatic_complexity": 1,
        "id": 34
    },
    {
        "task_id": "HumanEval/35",
        "prompt": "\n\ndef max_element(l: list):\n    \"\"\"Return maximum element in the list.\n    >>> max_element([1, 2, 3])\n    3\n    >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])\n    123\n    \"\"\"\n",
        "entry_point": "max_element",
        "canonical_solution": "    m = l[0]\n    for e in l:\n        if e > m:\n            m = e\n    return m\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 2, 3]) == 3\n    assert candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124\n",
        "line": 10,
        "token": 65,
        "cyclomatic_complexity": 3,
        "id": 35
    },
    {
        "task_id": "HumanEval/36",
        "prompt": "\n\ndef fizz_buzz(n: int):\n    \"\"\"Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.\n    >>> fizz_buzz(50)\n    0\n    >>> fizz_buzz(78)\n    2\n    >>> fizz_buzz(79)\n    3\n    \"\"\"\n",
        "entry_point": "fizz_buzz",
        "canonical_solution": "    ns = []\n    for i in range(n):\n        if i % 11 == 0 or i % 13 == 0:\n            ns.append(i)\n    s = ''.join(list(map(str, ns)))\n    ans = 0\n    for c in s:\n        ans += (c == '7')\n    return ans\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(50) == 0\n    assert candidate(78) == 2\n    assert candidate(79) == 3\n    assert candidate(100) == 3\n    assert candidate(200) == 6\n    assert candidate(4000) == 192\n    assert candidate(10000) == 639\n    assert candidate(100000) == 8026\n\n",
        "line": 12,
        "token": 60,
        "cyclomatic_complexity": 5,
        "id": 36
    },
    {
        "task_id": "HumanEval/37",
        "prompt": "\n\ndef sort_even(l: list):\n    \"\"\"This function takes a list l and returns a list l' such that\n    l' is identical to l in the odd indicies, while its values at the even indicies are equal\n    to the values of the even indicies of l, but sorted.\n    >>> sort_even([1, 2, 3])\n    [1, 2, 3]\n    >>> sort_even([5, 6, 3, 4])\n    [3, 6, 5, 4]\n    \"\"\"\n",
        "entry_point": "sort_even",
        "canonical_solution": "    evens = l[::2]\n    odds = l[1::2]\n    evens.sort()\n    ans = []\n    for e, o in zip(evens, odds):\n        ans.extend([e, o])\n    if len(evens) > len(odds):\n        ans.append(evens[-1])\n    return ans\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert tuple(candidate([1, 2, 3])) == tuple([1, 2, 3])\n    assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123])\n    assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10])\n\n",
        "line": 12,
        "token": 105,
        "cyclomatic_complexity": 3,
        "id": 37
    },
    {
        "task_id": "HumanEval/38",
        "prompt": "\n\ndef encode_cyclic(s: str):\n    \"\"\"\n    returns encoded string by cycling groups of three characters.\n    \"\"\"\n    # split string to groups. Each of length 3.\n    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]\n    # cycle elements in each group. Unless group has fewer elements than 3.\n    groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]\n    return \"\".join(groups)\n\n\ndef decode_cyclic(s: str):\n    \"\"\"\n    takes as input string encoded with encode_cyclic function. Returns decoded string.\n    \"\"\"\n",
        "entry_point": "decode_cyclic",
        "canonical_solution": "    return encode_cyclic(encode_cyclic(s))\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    from random import randint, choice\n    import string\n\n    letters = string.ascii_lowercase\n    for _ in range(100):\n        str = ''.join(choice(letters) for i in range(randint(10, 20)))\n        encoded_str = encode_cyclic(str)\n        assert candidate(encoded_str) == str\n\n",
        "line": 18,
        "token": 153,
        "cyclomatic_complexity": 4,
        "id": 38
    },
    {
        "task_id": "HumanEval/39",
        "prompt": "\n\ndef prime_fib(n: int):\n    \"\"\"\n    prime_fib returns n-th number that is a Fibonacci number and it's also prime.\n    >>> prime_fib(1)\n    2\n    >>> prime_fib(2)\n    3\n    >>> prime_fib(3)\n    5\n    >>> prime_fib(4)\n    13\n    >>> prime_fib(5)\n    89\n    \"\"\"\n",
        "entry_point": "prime_fib",
        "canonical_solution": "    import math\n\n    def is_prime(p):\n        if p < 2:\n            return False\n        for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):\n            if p % k == 0:\n                return False\n        return True\n    f = [0, 1]\n    while True:\n        f.append(f[-1] + f[-2])\n        if is_prime(f[-1]):\n            n -= 1\n        if n == 0:\n            return f[-1]\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(1) == 2\n    assert candidate(2) == 3\n    assert candidate(3) == 5\n    assert candidate(4) == 13\n    assert candidate(5) == 89\n    assert candidate(6) == 233\n    assert candidate(7) == 1597\n    assert candidate(8) == 28657\n    assert candidate(9) == 514229\n    assert candidate(10) == 433494437\n\n",
        "line": 17,
        "token": 69,
        "cyclomatic_complexity": 4,
        "id": 39
    },
    {
        "task_id": "HumanEval/40",
        "prompt": "\n\ndef triples_sum_to_zero(l: list):\n    \"\"\"\n    triples_sum_to_zero takes a list of integers as an input.\n    it returns True if there are three distinct elements in the list that\n    sum to zero, and False otherwise.\n\n    >>> triples_sum_to_zero([1, 3, 5, 0])\n    False\n    >>> triples_sum_to_zero([1, 3, -2, 1])\n    True\n    >>> triples_sum_to_zero([1, 2, 3, 7])\n    False\n    >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])\n    True\n    >>> triples_sum_to_zero([1])\n    False\n    \"\"\"\n",
        "entry_point": "triples_sum_to_zero",
        "canonical_solution": "    for i in range(len(l)):\n        for j in range(i + 1, len(l)):\n            for k in range(j + 1, len(l)):\n                if l[i] + l[j] + l[k] == 0:\n                    return True\n    return False\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 3, 5, 0]) == False\n    assert candidate([1, 3, 5, -1]) == False\n    assert candidate([1, 3, -2, 1]) == True\n    assert candidate([1, 2, 3, 7]) == False\n    assert candidate([1, 2, 5, 7]) == False\n    assert candidate([2, 4, -5, 3, 9, 7]) == True\n    assert candidate([1]) == False\n    assert candidate([1, 3, 5, -100]) == False\n    assert candidate([100, 3, 5, -100]) == False\n\n",
        "line": 20,
        "token": 123,
        "cyclomatic_complexity": 5,
        "id": 40
    },
    {
        "task_id": "HumanEval/41",
        "prompt": "\n\ndef car_race_collision(n: int):\n    \"\"\"\n    Imagine a road that's a perfectly straight infinitely long line.\n    n cars are driving left to right;  simultaneously, a different set of n cars\n    are driving right to left.   The two sets of cars start out being very far from\n    each other.  All cars move in the same speed.  Two cars are said to collide\n    when a car that's moving left to right hits a car that's moving right to left.\n    However, the cars are infinitely sturdy and strong; as a result, they continue moving\n    in their trajectory as if they did not collide.\n\n    This function outputs the number of such collisions.\n    \"\"\"\n",
        "entry_point": "car_race_collision",
        "canonical_solution": "    return n**2\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(2) == 4\n    assert candidate(3) == 9\n    assert candidate(4) == 16\n    assert candidate(8) == 64\n    assert candidate(10) == 100\n\n",
        "line": 15,
        "token": 130,
        "cyclomatic_complexity": 1,
        "id": 41
    },
    {
        "task_id": "HumanEval/42",
        "prompt": "\n\ndef incr_list(l: list):\n    \"\"\"Return list with elements incremented by 1.\n    >>> incr_list([1, 2, 3])\n    [2, 3, 4]\n    >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])\n    [6, 4, 6, 3, 4, 4, 10, 1, 124]\n    \"\"\"\n",
        "entry_point": "incr_list",
        "canonical_solution": "    return [(e + 1) for e in l]\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([]) == []\n    assert candidate([3, 2, 1]) == [4, 3, 2]\n    assert candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]\n\n",
        "line": 10,
        "token": 86,
        "cyclomatic_complexity": 2,
        "id": 42
    },
    {
        "task_id": "HumanEval/43",
        "prompt": "\n\ndef pairs_sum_to_zero(l):\n    \"\"\"\n    pairs_sum_to_zero takes a list of integers as an input.\n    it returns True if there are two distinct elements in the list that\n    sum to zero, and False otherwise.\n    >>> pairs_sum_to_zero([1, 3, 5, 0])\n    False\n    >>> pairs_sum_to_zero([1, 3, -2, 1])\n    False\n    >>> pairs_sum_to_zero([1, 2, 3, 7])\n    False\n    >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])\n    True\n    >>> pairs_sum_to_zero([1])\n    False\n    \"\"\"\n",
        "entry_point": "pairs_sum_to_zero",
        "canonical_solution": "    for i, l1 in enumerate(l):\n        for j in range(i + 1, len(l)):\n            if l1 + l[j] == 0:\n                return True\n    return False\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 3, 5, 0]) == False\n    assert candidate([1, 3, -2, 1]) == False\n    assert candidate([1, 2, 3, 7]) == False\n    assert candidate([2, 4, -5, 3, 5, 7]) == True\n    assert candidate([1]) == False\n\n    assert candidate([-3, 9, -1, 3, 2, 30]) == True\n    assert candidate([-3, 9, -1, 3, 2, 31]) == True\n    assert candidate([-3, 9, -1, 4, 2, 30]) == False\n    assert candidate([-3, 9, -1, 4, 2, 31]) == False\n\n",
        "line": 19,
        "token": 121,
        "cyclomatic_complexity": 4,
        "id": 43
    },
    {
        "task_id": "HumanEval/44",
        "prompt": "\n\ndef change_base(x: int, base: int):\n    \"\"\"Change numerical base of input number x to base.\n    return string representation after the conversion.\n    base numbers are less than 10.\n    >>> change_base(8, 3)\n    '22'\n    >>> change_base(8, 2)\n    '1000'\n    >>> change_base(7, 2)\n    '111'\n    \"\"\"\n",
        "entry_point": "change_base",
        "canonical_solution": "    ret = \"\"\n    while x > 0:\n        ret = str(x % base) + ret\n        x //= base\n    return ret\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(8, 3) == \"22\"\n    assert candidate(9, 3) == \"100\"\n    assert candidate(234, 2) == \"11101010\"\n    assert candidate(16, 2) == \"10000\"\n    assert candidate(8, 2) == \"1000\"\n    assert candidate(7, 2) == \"111\"\n    for x in range(2, 8):\n        assert candidate(x, x + 1) == str(x)\n\n",
        "line": 14,
        "token": 72,
        "cyclomatic_complexity": 2,
        "id": 44
    },
    {
        "task_id": "HumanEval/45",
        "prompt": "\n\ndef triangle_area(a, h):\n    \"\"\"Given length of a side and high return area for a triangle.\n    >>> triangle_area(5, 3)\n    7.5\n    \"\"\"\n",
        "entry_point": "triangle_area",
        "canonical_solution": "    return a * h / 2.0\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(5, 3) == 7.5\n    assert candidate(2, 2) == 2.0\n    assert candidate(10, 8) == 40.0\n\n",
        "line": 8,
        "token": 37,
        "cyclomatic_complexity": 1,
        "id": 45
    },
    {
        "task_id": "HumanEval/46",
        "prompt": "\n\ndef fib4(n: int):\n    \"\"\"The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:\n    fib4(0) -> 0\n    fib4(1) -> 0\n    fib4(2) -> 2\n    fib4(3) -> 0\n    fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).\n    Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.\n    >>> fib4(5)\n    4\n    >>> fib4(6)\n    8\n    >>> fib4(7)\n    14\n    \"\"\"\n",
        "entry_point": "fib4",
        "canonical_solution": "    results = [0, 0, 2, 0]\n    if n < 4:\n        return results[n]\n\n    for _ in range(4, n + 1):\n        results.append(results[-1] + results[-2] + results[-3] + results[-4])\n        results.pop(0)\n\n    return results[-1]\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(5) == 4\n    assert candidate(8) == 28\n    assert candidate(10) == 104\n    assert candidate(12) == 386\n\n",
        "line": 18,
        "token": 131,
        "cyclomatic_complexity": 3,
        "id": 46
    },
    {
        "task_id": "HumanEval/47",
        "prompt": "\n\ndef median(l: list):\n    \"\"\"Return median of elements in the list l.\n    >>> median([3, 1, 2, 4, 5])\n    3\n    >>> median([-10, 4, 6, 1000, 10, 20])\n    15.0\n    \"\"\"\n",
        "entry_point": "median",
        "canonical_solution": "    l = sorted(l)\n    if len(l) % 2 == 1:\n        return l[len(l) // 2]\n    else:\n        return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([3, 1, 2, 4, 5]) == 3\n    assert candidate([-10, 4, 6, 1000, 10, 20]) == 8.0\n    assert candidate([5]) == 5\n    assert candidate([6, 5]) == 5.5\n    assert candidate([8, 1, 3, 9, 9, 2, 7]) == 7 \n\n",
        "line": 10,
        "token": 60,
        "cyclomatic_complexity": 2,
        "id": 47
    },
    {
        "task_id": "HumanEval/48",
        "prompt": "\n\ndef is_palindrome(text: str):\n    \"\"\"\n    Checks if given string is a palindrome\n    >>> is_palindrome('')\n    True\n    >>> is_palindrome('aba')\n    True\n    >>> is_palindrome('aaaaa')\n    True\n    >>> is_palindrome('zbcd')\n    False\n    \"\"\"\n",
        "entry_point": "is_palindrome",
        "canonical_solution": "    for i in range(len(text)):\n        if text[i] != text[len(text) - 1 - i]:\n            return False\n    return True\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate('') == True\n    assert candidate('aba') == True\n    assert candidate('aaaaa') == True\n    assert candidate('zbcd') == False\n    assert candidate('xywyx') == True\n    assert candidate('xywyz') == False\n    assert candidate('xywzx') == False\n\n",
        "line": 15,
        "token": 56,
        "cyclomatic_complexity": 3,
        "id": 48
    },
    {
        "task_id": "HumanEval/49",
        "prompt": "\n\ndef modp(n: int, p: int):\n    \"\"\"Return 2^n modulo p (be aware of numerics).\n    >>> modp(3, 5)\n    3\n    >>> modp(1101, 101)\n    2\n    >>> modp(0, 101)\n    1\n    >>> modp(3, 11)\n    8\n    >>> modp(100, 101)\n    1\n    \"\"\"\n",
        "entry_point": "modp",
        "canonical_solution": "    ret = 1\n    for i in range(n):\n        ret = (2 * ret) % p\n    return ret\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(3, 5) == 3\n    assert candidate(1101, 101) == 2\n    assert candidate(0, 101) == 1\n    assert candidate(3, 11) == 8\n    assert candidate(100, 101) == 1\n    assert candidate(30, 5) == 4\n    assert candidate(31, 5) == 3\n\n",
        "line": 16,
        "token": 79,
        "cyclomatic_complexity": 2,
        "id": 49
    },
    {
        "task_id": "HumanEval/50",
        "prompt": "\n\ndef encode_shift(s: str):\n    \"\"\"\n    returns encoded string by shifting every character by 5 in the alphabet.\n    \"\"\"\n    return \"\".join([chr(((ord(ch) + 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n\n\ndef decode_shift(s: str):\n    \"\"\"\n    takes as input string encoded with encode_shift function. Returns decoded string.\n    \"\"\"\n",
        "entry_point": "decode_shift",
        "canonical_solution": "    return \"\".join([chr(((ord(ch) - 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    from random import randint, choice\n    import copy\n    import string\n\n    letters = string.ascii_lowercase\n    for _ in range(100):\n        str = ''.join(choice(letters) for i in range(randint(10, 20)))\n        encoded_str = encode_shift(str)\n        assert candidate(copy.deepcopy(encoded_str)) == str\n\n",
        "line": 14,
        "token": 93,
        "cyclomatic_complexity": 2,
        "id": 50
    },
    {
        "task_id": "HumanEval/51",
        "prompt": "\n\ndef remove_vowels(text):\n    \"\"\"\n    remove_vowels is a function that takes string and returns string without vowels.\n    >>> remove_vowels('')\n    ''\n    >>> remove_vowels(\"abcdef\\nghijklm\")\n    'bcdf\\nghjklm'\n    >>> remove_vowels('abcdef')\n    'bcdf'\n    >>> remove_vowels('aaaaa')\n    ''\n    >>> remove_vowels('aaBAA')\n    'B'\n    >>> remove_vowels('zbcd')\n    'zbcd'\n    \"\"\"\n",
        "entry_point": "remove_vowels",
        "canonical_solution": "    return \"\".join([s for s in text if s.lower() not in [\"a\", \"e\", \"i\", \"o\", \"u\"]])\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate('') == ''\n    assert candidate(\"abcdef\\nghijklm\") == 'bcdf\\nghjklm'\n    assert candidate('fedcba') == 'fdcb'\n    assert candidate('eeeee') == ''\n    assert candidate('acBAA') == 'cB'\n    assert candidate('EcBOO') == 'cB'\n    assert candidate('ybcd') == 'ybcd'\n\n",
        "line": 19,
        "token": 80,
        "cyclomatic_complexity": 3,
        "id": 51
    },
    {
        "task_id": "HumanEval/52",
        "prompt": "\n\ndef below_threshold(l: list, t: int):\n    \"\"\"Return True if all numbers in the list l are below threshold t.\n    >>> below_threshold([1, 2, 4, 10], 100)\n    True\n    >>> below_threshold([1, 20, 4, 10], 5)\n    False\n    \"\"\"\n",
        "entry_point": "below_threshold",
        "canonical_solution": "    for e in l:\n        if e >= t:\n            return False\n    return True\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 2, 4, 10], 100)\n    assert not candidate([1, 20, 4, 10], 5)\n    assert candidate([1, 20, 4, 10], 21)\n    assert candidate([1, 20, 4, 10], 22)\n    assert candidate([1, 8, 4, 10], 11)\n    assert not candidate([1, 8, 4, 10], 10)\n\n",
        "line": 10,
        "token": 67,
        "cyclomatic_complexity": 3,
        "id": 52
    },
    {
        "task_id": "HumanEval/53",
        "prompt": "\n\ndef add(x: int, y: int):\n    \"\"\"Add two numbers x and y\n    >>> add(2, 3)\n    5\n    >>> add(5, 7)\n    12\n    \"\"\"\n",
        "entry_point": "add",
        "canonical_solution": "    return x + y\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    import random\n\n    assert candidate(0, 1) == 1\n    assert candidate(1, 0) == 1\n    assert candidate(2, 3) == 5\n    assert candidate(5, 7) == 12\n    assert candidate(7, 5) == 12\n\n    for i in range(100):\n        x, y = random.randint(0, 1000), random.randint(0, 1000)\n        assert candidate(x, y) == x + y\n\n",
        "line": 10,
        "token": 44,
        "cyclomatic_complexity": 1,
        "id": 53
    },
    {
        "task_id": "HumanEval/54",
        "prompt": "\n\ndef same_chars(s0: str, s1: str):\n    \"\"\"\n    Check if two words have the same characters.\n    >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc')\n    True\n    >>> same_chars('abcd', 'dddddddabc')\n    True\n    >>> same_chars('dddddddabc', 'abcd')\n    True\n    >>> same_chars('eabcd', 'dddddddabc')\n    False\n    >>> same_chars('abcd', 'dddddddabce')\n    False\n    >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc')\n    False\n    \"\"\"\n",
        "entry_point": "same_chars",
        "canonical_solution": "    return set(s0) == set(s1)\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') == True\n    assert candidate('abcd', 'dddddddabc') == True\n    assert candidate('dddddddabc', 'abcd') == True\n    assert candidate('eabcd', 'dddddddabc') == False\n    assert candidate('abcd', 'dddddddabcf') == False\n    assert candidate('eabcdzzzz', 'dddzzzzzzzddddabc') == False\n    assert candidate('aabb', 'aaccc') == False\n\n",
        "line": 19,
        "token": 99,
        "cyclomatic_complexity": 1,
        "id": 54
    },
    {
        "task_id": "HumanEval/55",
        "prompt": "\n\ndef fib(n: int):\n    \"\"\"Return n-th Fibonacci number.\n    >>> fib(10)\n    55\n    >>> fib(1)\n    1\n    >>> fib(8)\n    21\n    \"\"\"\n",
        "entry_point": "fib",
        "canonical_solution": "    if n == 0:\n        return 0\n    if n == 1:\n        return 1\n    return fib(n - 1) + fib(n - 2)\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(10) == 55\n    assert candidate(1) == 1\n    assert candidate(8) == 21\n    assert candidate(11) == 89\n    assert candidate(12) == 144\n\n",
        "line": 12,
        "token": 43,
        "cyclomatic_complexity": 3,
        "id": 55
    },
    {
        "task_id": "HumanEval/56",
        "prompt": "\n\ndef correct_bracketing(brackets: str):\n    \"\"\" brackets is a string of \"<\" and \">\".\n    return True if every opening bracket has a corresponding closing bracket.\n\n    >>> correct_bracketing(\"<\")\n    False\n    >>> correct_bracketing(\"<>\")\n    True\n    >>> correct_bracketing(\"<<><>>\")\n    True\n    >>> correct_bracketing(\"><<>\")\n    False\n    \"\"\"\n",
        "entry_point": "correct_bracketing",
        "canonical_solution": "    depth = 0\n    for b in brackets:\n        if b == \"<\":\n            depth += 1\n        else:\n            depth -= 1\n        if depth < 0:\n            return False\n    return depth == 0\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(\"<>\")\n    assert candidate(\"<<><>>\")\n    assert candidate(\"<><><<><>><>\")\n    assert candidate(\"<><><<<><><>><>><<><><<>>>\")\n    assert not candidate(\"<<<><>>>>\")\n    assert not candidate(\"><<>\")\n    assert not candidate(\"<\")\n    assert not candidate(\"<<<<\")\n    assert not candidate(\">\")\n    assert not candidate(\"<<>\")\n    assert not candidate(\"<><><<><>><>><<>\")\n    assert not candidate(\"<><><<><>><>>><>\")\n\n",
        "line": 16,
        "token": 88,
        "cyclomatic_complexity": 4,
        "id": 56
    },
    {
        "task_id": "HumanEval/57",
        "prompt": "\n\ndef monotonic(l: list):\n    \"\"\"Return True is list elements are monotonically increasing or decreasing.\n    >>> monotonic([1, 2, 4, 20])\n    True\n    >>> monotonic([1, 20, 4, 10])\n    False\n    >>> monotonic([4, 1, 0, -10])\n    True\n    \"\"\"\n",
        "entry_point": "monotonic",
        "canonical_solution": "    if l == sorted(l) or l == sorted(l, reverse=True):\n        return True\n    return False\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 2, 4, 10]) == True\n    assert candidate([1, 2, 4, 20]) == True\n    assert candidate([1, 20, 4, 10]) == False\n    assert candidate([4, 1, 0, -10]) == True\n    assert candidate([4, 1, 1, 0]) == True\n    assert candidate([1, 2, 3, 2, 5, 60]) == False\n    assert candidate([1, 2, 3, 4, 5, 60]) == True\n    assert candidate([9, 9, 9, 9]) == True\n\n",
        "line": 12,
        "token": 73,
        "cyclomatic_complexity": 3,
        "id": 57
    },
    {
        "task_id": "HumanEval/58",
        "prompt": "\n\ndef common(l1: list, l2: list):\n    \"\"\"Return sorted unique common elements for two lists.\n    >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])\n    [1, 5, 653]\n    >>> common([5, 3, 2, 8], [3, 2])\n    [2, 3]\n\n    \"\"\"\n",
        "entry_point": "common",
        "canonical_solution": "    ret = set()\n    for e1 in l1:\n        for e2 in l2:\n            if e1 == e2:\n                ret.add(e1)\n    return sorted(list(ret))\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]\n    assert candidate([5, 3, 2, 8], [3, 2]) == [2, 3]\n    assert candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4]\n    assert candidate([4, 3, 2, 8], []) == []\n\n",
        "line": 11,
        "token": 97,
        "cyclomatic_complexity": 4,
        "id": 58
    },
    {
        "task_id": "HumanEval/59",
        "prompt": "\n\ndef largest_prime_factor(n: int):\n    \"\"\"Return the largest prime factor of n. Assume n > 1 and is not a prime.\n    >>> largest_prime_factor(13195)\n    29\n    >>> largest_prime_factor(2048)\n    2\n    \"\"\"\n",
        "entry_point": "largest_prime_factor",
        "canonical_solution": "    def is_prime(k):\n        if k < 2:\n            return False\n        for i in range(2, k - 1):\n            if k % i == 0:\n                return False\n        return True\n    largest = 1\n    for j in range(2, n + 1):\n        if n % j == 0 and is_prime(j):\n            largest = max(largest, j)\n    return largest\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(15) == 5\n    assert candidate(27) == 3\n    assert candidate(63) == 7\n    assert candidate(330) == 11\n    assert candidate(13195) == 29\n\n",
        "line": 10,
        "token": 47,
        "cyclomatic_complexity": 4,
        "id": 59
    },
    {
        "task_id": "HumanEval/60",
        "prompt": "\n\ndef sum_to_n(n: int):\n    \"\"\"sum_to_n is a function that sums numbers from 1 to n.\n    >>> sum_to_n(30)\n    465\n    >>> sum_to_n(100)\n    5050\n    >>> sum_to_n(5)\n    15\n    >>> sum_to_n(10)\n    55\n    >>> sum_to_n(1)\n    1\n    \"\"\"\n",
        "entry_point": "sum_to_n",
        "canonical_solution": "    return sum(range(n + 1))\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(1) == 1\n    assert candidate(6) == 21\n    assert candidate(11) == 66\n    assert candidate(30) == 465\n    assert candidate(100) == 5050\n\n",
        "line": 16,
        "token": 65,
        "cyclomatic_complexity": 1,
        "id": 60
    },
    {
        "task_id": "HumanEval/61",
        "prompt": "\n\ndef correct_bracketing(brackets: str):\n    \"\"\" brackets is a string of \"(\" and \")\".\n    return True if every opening bracket has a corresponding closing bracket.\n\n    >>> correct_bracketing(\"(\")\n    False\n    >>> correct_bracketing(\"()\")\n    True\n    >>> correct_bracketing(\"(()())\")\n    True\n    >>> correct_bracketing(\")(()\")\n    False\n    \"\"\"\n",
        "entry_point": "correct_bracketing",
        "canonical_solution": "    depth = 0\n    for b in brackets:\n        if b == \"(\":\n            depth += 1\n        else:\n            depth -= 1\n        if depth < 0:\n            return False\n    return depth == 0\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(\"()\")\n    assert candidate(\"(()())\")\n    assert candidate(\"()()(()())()\")\n    assert candidate(\"()()((()()())())(()()(()))\")\n    assert not candidate(\"((()())))\")\n    assert not candidate(\")(()\")\n    assert not candidate(\"(\")\n    assert not candidate(\"((((\")\n    assert not candidate(\")\")\n    assert not candidate(\"(()\")\n    assert not candidate(\"()()(()())())(()\")\n    assert not candidate(\"()()(()())()))()\")\n\n",
        "line": 16,
        "token": 88,
        "cyclomatic_complexity": 4,
        "id": 61
    },
    {
        "task_id": "HumanEval/62",
        "prompt": "\n\ndef derivative(xs: list):\n    \"\"\" xs represent coefficients of a polynomial.\n    xs[0] + xs[1] * x + xs[2] * x^2 + ....\n     Return derivative of this polynomial in the same form.\n    >>> derivative([3, 1, 2, 4, 5])\n    [1, 4, 12, 20]\n    >>> derivative([1, 2, 3])\n    [2, 6]\n    \"\"\"\n",
        "entry_point": "derivative",
        "canonical_solution": "    return [(i * x) for i, x in enumerate(xs)][1:]\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n    assert candidate([1, 2, 3]) == [2, 6]\n    assert candidate([3, 2, 1]) == [2, 2]\n    assert candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n    assert candidate([1]) == []\n\n",
        "line": 12,
        "token": 95,
        "cyclomatic_complexity": 2,
        "id": 62
    },
    {
        "task_id": "HumanEval/63",
        "prompt": "\n\ndef fibfib(n: int):\n    \"\"\"The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:\n    fibfib(0) == 0\n    fibfib(1) == 0\n    fibfib(2) == 1\n    fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).\n    Please write a function to efficiently compute the n-th element of the fibfib number sequence.\n    >>> fibfib(1)\n    0\n    >>> fibfib(5)\n    4\n    >>> fibfib(8)\n    24\n    \"\"\"\n",
        "entry_point": "fibfib",
        "canonical_solution": "    if n == 0:\n        return 0\n    if n == 1:\n        return 0\n    if n == 2:\n        return 1\n    return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)\n",
        "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n    assert candidate(2) == 1\n    assert candidate(1) == 0\n    assert candidate(5) == 4\n    assert candidate(8) == 24\n    assert candidate(10) == 81\n    assert candidate(12) == 274\n    assert candidate(14) == 927\n\n",
        "line": 17,
        "token": 110,
        "cyclomatic_complexity": 4,
        "id": 63
    },
    {
        "task_id": "HumanEval/64",
        "prompt": "\nFIX = \"\"\"\nAdd more test cases.\n\"\"\"\n\ndef vowels_count(s):\n    \"\"\"Write a function vowels_count which takes a string representing\n    a word as input and returns the number of vowels in the string.\n    Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a\n    vowel, but only when it is at the end of the given word.\n\n    Example:\n    >>> vowels_count(\"abcde\")\n    2\n    >>> vowels_count(\"ACEDY\")\n    3\n    \"\"\"\n",
        "entry_point": "vowels_count",
        "canonical_solution": "    vowels = \"aeiouAEIOU\"\n    n_vowels = sum(c in vowels for c in s)\n    if s[-1] == 'y' or s[-1] == 'Y':\n        n_vowels += 1\n    return n_vowels\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"abcde\") == 2, \"Test 1\"\n    assert candidate(\"Alone\") == 3, \"Test 2\"\n    assert candidate(\"key\") == 2, \"Test 3\"\n    assert candidate(\"bye\") == 1, \"Test 4\"\n    assert candidate(\"keY\") == 2, \"Test 5\"\n    assert candidate(\"bYe\") == 1, \"Test 6\"\n    assert candidate(\"ACEDY\") == 3, \"Test 7\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 18,
        "token": 117,
        "cyclomatic_complexity": 4,
        "id": 64
    },
    {
        "task_id": "HumanEval/65",
        "prompt": "\ndef circular_shift(x, shift):\n    \"\"\"Circular shift the digits of the integer x, shift the digits right by shift\n    and return the result as a string.\n    If shift > number of digits, return digits reversed.\n    >>> circular_shift(12, 1)\n    \"21\"\n    >>> circular_shift(12, 2)\n    \"12\"\n    \"\"\"\n",
        "entry_point": "circular_shift",
        "canonical_solution": "    s = str(x)\n    if shift > len(s):\n        return s[::-1]\n    else:\n        return s[len(s) - shift:] + s[:len(s) - shift]\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(100, 2) == \"001\"\n    assert candidate(12, 2) == \"12\"\n    assert candidate(97, 8) == \"79\"\n    assert candidate(12, 1) == \"21\", \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(11, 101) == \"11\", \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 11,
        "token": 72,
        "cyclomatic_complexity": 2,
        "id": 65
    },
    {
        "task_id": "HumanEval/66",
        "prompt": "\ndef digitSum(s):\n    \"\"\"Task\n    Write a function that takes a string as input and returns the sum of the upper characters only'\n    ASCII codes.\n\n    Examples:\n        digitSum(\"\") => 0\n        digitSum(\"abAB\") => 131\n        digitSum(\"abcCd\") => 67\n        digitSum(\"helloE\") => 69\n        digitSum(\"woArBld\") => 131\n        digitSum(\"aAaaaXa\") => 153\n    \"\"\"\n",
        "entry_point": "digitSum",
        "canonical_solution": "    if s == \"\": return 0\n    return sum(ord(char) if char.isupper() else 0 for char in s)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(\"\") == 0, \"Error\"\n    assert candidate(\"abAB\") == 131, \"Error\"\n    assert candidate(\"abcCd\") == 67, \"Error\"\n    assert candidate(\"helloE\") == 69, \"Error\"\n    assert candidate(\"woArBld\") == 131, \"Error\"\n    assert candidate(\"aAaaaXa\") == 153, \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(\" How are yOu?\") == 151, \"Error\"\n    assert candidate(\"You arE Very Smart\") == 327, \"Error\"\n\n",
        "line": 15,
        "token": 89,
        "cyclomatic_complexity": 4,
        "id": 66
    },
    {
        "task_id": "HumanEval/67",
        "prompt": "\ndef fruit_distribution(s,n):\n    \"\"\"\n    In this task, you will be given a string that represents a number of apples and oranges \n    that are distributed in a basket of fruit this basket contains \n    apples, oranges, and mango fruits. Given the string that represents the total number of \n    the oranges and apples and an integer that represent the total number of the fruits \n    in the basket return the number of the mango fruits in the basket.\n    for examble:\n    fruit_distribution(\"5 apples and 6 oranges\", 19) ->19 - 5 - 6 = 8\n    fruit_distribution(\"0 apples and 1 oranges\",3) -> 3 - 0 - 1 = 2\n    fruit_distribution(\"2 apples and 3 oranges\", 100) -> 100 - 2 - 3 = 95\n    fruit_distribution(\"100 apples and 1 oranges\",120) -> 120 - 100 - 1 = 19\n    \"\"\"\n",
        "entry_point": "fruit_distribution",
        "canonical_solution": "    lis = list()\n    for i in s.split(' '):\n        if i.isdigit():\n            lis.append(int(i))\n    return n - sum(lis)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"5 apples and 6 oranges\",19) == 8\n    assert candidate(\"5 apples and 6 oranges\",21) == 10\n    assert candidate(\"0 apples and 1 oranges\",3) == 2\n    assert candidate(\"1 apples and 0 oranges\",3) == 2\n    assert candidate(\"2 apples and 3 oranges\",100) == 95\n    assert candidate(\"2 apples and 3 oranges\",5) == 0\n    assert candidate(\"1 apples and 100 oranges\",120) == 19\n",
        "line": 15,
        "token": 174,
        "cyclomatic_complexity": 3,
        "id": 67
    },
    {
        "task_id": "HumanEval/68",
        "prompt": "\ndef pluck(arr):\n    \"\"\"\n    \"Given an array representing a branch of a tree that has non-negative integer nodes\n    your task is to pluck one of the nodes and return it.\n    The plucked node should be the node with the smallest even value.\n    If multiple nodes with the same smallest even value are found return the node that has smallest index.\n\n    The plucked node should be returned in a list, [ smalest_value, its index ],\n    If there are no even values or the given array is empty, return [].\n\n    Example 1:\n        Input: [4,2,3]\n        Output: [2, 1]\n        Explanation: 2 has the smallest even value, and 2 has the smallest index.\n\n    Example 2:\n        Input: [1,2,3]\n        Output: [2, 1]\n        Explanation: 2 has the smallest even value, and 2 has the smallest index. \n\n    Example 3:\n        Input: []\n        Output: []\n    \n    Example 4:\n        Input: [5, 0, 3, 0, 4, 2]\n        Output: [0, 1]\n        Explanation: 0 is the smallest value, but  there are two zeros,\n                     so we will choose the first zero, which has the smallest index.\n\n    Constraints:\n        * 1 <= nodes.length <= 10000\n        * 0 <= node.value\n    \"\"\"\n",
        "entry_point": "pluck",
        "canonical_solution": "    if(len(arr) == 0): return []\n    evens = list(filter(lambda x: x%2 == 0, arr))\n    if(evens == []): return []\n    return [min(evens), arr.index(min(evens))]\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([4,2,3]) == [2, 1], \"Error\"\n    assert candidate([1,2,3]) == [2, 1], \"Error\"\n    assert candidate([]) == [], \"Error\"\n    assert candidate([5, 0, 3, 0, 4, 2]) == [0, 1], \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([1, 2, 3, 0, 5, 3]) == [0, 3], \"Error\"\n    assert candidate([5, 4, 8, 4 ,8]) == [4, 1], \"Error\"\n    assert candidate([7, 6, 7, 1]) == [6, 1], \"Error\"\n    assert candidate([7, 9, 7, 1]) == [], \"Error\"\n\n",
        "line": 36,
        "token": 247,
        "cyclomatic_complexity": 3,
        "id": 68
    },
    {
        "task_id": "HumanEval/69",
        "prompt": "\ndef search(lst):\n    '''\n    You are given a non-empty list of positive integers. Return the greatest integer that is greater than \n    zero, and has a frequency greater than or equal to the value of the integer itself. \n    The frequency of an integer is the number of times it appears in the list.\n    If no such a value exist, return -1.\n    Examples:\n        search([4, 1, 2, 2, 3, 1]) == 2\n        search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3\n        search([5, 5, 4, 4, 4]) == -1\n    '''\n",
        "entry_point": "search",
        "canonical_solution": "    frq = [0] * (max(lst) + 1)\n    for i in lst:\n        frq[i] += 1;\n\n    ans = -1\n    for i in range(1, len(frq)):\n        if frq[i] >= i:\n            ans = i\n    \n    return ans\n",
        "test": "def check(candidate):\n\n    # manually generated tests\n    assert candidate([5, 5, 5, 5, 1]) == 1\n    assert candidate([4, 1, 4, 1, 4, 4]) == 4\n    assert candidate([3, 3]) == -1\n    assert candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8\n    assert candidate([2, 3, 3, 2, 2]) == 2\n\n    # automatically generated tests\n    assert candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1\n    assert candidate([3, 2, 8, 2]) == 2\n    assert candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1\n    assert candidate([8, 8, 3, 6, 5, 6, 4]) == -1\n    assert candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1\n    assert candidate([1, 9, 10, 1, 3]) == 1\n    assert candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5\n    assert candidate([1]) == 1\n    assert candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4\n    assert candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2\n    assert candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1\n    assert candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4\n    assert candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4\n    assert candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2\n    assert candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1\n    assert candidate([10]) == -1\n    assert candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2\n    assert candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1\n    assert candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1\n    assert candidate([3, 10, 10, 9, 2]) == -1\n\n",
        "line": 13,
        "token": 132,
        "cyclomatic_complexity": 4,
        "id": 69
    },
    {
        "task_id": "HumanEval/70",
        "prompt": "\ndef strange_sort_list(lst):\n    '''\n    Given list of integers, return list in strange order.\n    Strange sorting, is when you start with the minimum value,\n    then maximum of the remaining integers, then minimum and so on.\n\n    Examples:\n    strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3]\n    strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5]\n    strange_sort_list([]) == []\n    '''\n",
        "entry_point": "strange_sort_list",
        "canonical_solution": "    res, switch = [], True\n    while lst:\n        res.append(min(lst) if switch else max(lst))\n        lst.remove(res[-1])\n        switch = not switch\n    return res\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1, 2, 3, 4]) == [1, 4, 2, 3]\n    assert candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]\n    assert candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]\n    assert candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]\n    assert candidate([5, 5, 5, 5]) == [5, 5, 5, 5]\n    assert candidate([]) == []\n    assert candidate([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5]\n    assert candidate([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2]\n    assert candidate([111111]) == [111111]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 13,
        "token": 100,
        "cyclomatic_complexity": 3,
        "id": 70
    },
    {
        "task_id": "HumanEval/71",
        "prompt": "\ndef triangle_area(a, b, c):\n    '''\n    Given the lengths of the three sides of a triangle. Return the area of\n    the triangle rounded to 2 decimal points if the three sides form a valid triangle. \n    Otherwise return -1\n    Three sides make a valid triangle when the sum of any two sides is greater \n    than the third side.\n    Example:\n    triangle_area(3, 4, 5) == 6.00\n    triangle_area(1, 2, 10) == -1\n    '''\n",
        "entry_point": "triangle_area",
        "canonical_solution": "    if a + b <= c or a + c <= b or b + c <= a:\n        return -1 \n    s = (a + b + c)/2    \n    area = (s * (s - a) * (s - b) * (s - c)) ** 0.5\n    area = round(area, 2)\n    return area\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(3, 4, 5) == 6.00, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(1, 2, 10) == -1\n    assert candidate(4, 8, 5) == 8.18\n    assert candidate(2, 2, 2) == 1.73\n    assert candidate(1, 2, 3) == -1\n    assert candidate(10, 5, 7) == 16.25\n    assert candidate(2, 6, 3) == -1\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1, 1, 1) == 0.43, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(2, 2, 10) == -1\n\n",
        "line": 13,
        "token": 90,
        "cyclomatic_complexity": 4,
        "id": 71
    },
    {
        "task_id": "HumanEval/72",
        "prompt": "\ndef will_it_fly(q,w):\n    '''\n    Write a function that returns True if the object q will fly, and False otherwise.\n    The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w.\n\n    Example:\n    will_it_fly([1, 2], 5) ➞ False \n    # 1+2 is less than the maximum possible weight, but it's unbalanced.\n\n    will_it_fly([3, 2, 3], 1) ➞ False\n    # it's balanced, but 3+2+3 is more than the maximum possible weight.\n\n    will_it_fly([3, 2, 3], 9) ➞ True\n    # 3+2+3 is less than the maximum possible weight, and it's balanced.\n\n    will_it_fly([3], 5) ➞ True\n    # 3 is less than the maximum possible weight, and it's balanced.\n    '''\n",
        "entry_point": "will_it_fly",
        "canonical_solution": "    if sum(q) > w:\n        return False\n\n    i, j = 0, len(q)-1\n    while i<j:\n        if q[i] != q[j]:\n            return False\n        i+=1\n        j-=1\n    return True\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([3, 2, 3], 9) is True\n    assert candidate([1, 2], 5) is False\n    assert candidate([3], 5) is True\n    assert candidate([3, 2, 3], 1) is False\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1, 2, 3], 6) is False\n    assert candidate([5], 5) is True\n\n",
        "line": 20,
        "token": 172,
        "cyclomatic_complexity": 4,
        "id": 72
    },
    {
        "task_id": "HumanEval/73",
        "prompt": "\ndef smallest_change(arr):\n    \"\"\"\n    Given an array arr of integers, find the minimum number of elements that\n    need to be changed to make the array palindromic. A palindromic array is an array that\n    is read the same backwards and forwards. In one change, you can change one element to any other element.\n\n    For example:\n    smallest_change([1,2,3,5,4,7,9,6]) == 4\n    smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1\n    smallest_change([1, 2, 3, 2, 1]) == 0\n    \"\"\"\n",
        "entry_point": "smallest_change",
        "canonical_solution": "    ans = 0\n    for i in range(len(arr) // 2):\n        if arr[i] != arr[len(arr) - i - 1]:\n            ans += 1\n    return ans\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1,2,3,5,4,7,9,6]) == 4\n    assert candidate([1, 2, 3, 4, 3, 2, 2]) == 1\n    assert candidate([1, 4, 2]) == 1\n    assert candidate([1, 4, 4, 2]) == 1\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1, 2, 3, 2, 1]) == 0\n    assert candidate([3, 1, 1, 3]) == 0\n    assert candidate([1]) == 0\n    assert candidate([0, 1]) == 1\n\n",
        "line": 13,
        "token": 112,
        "cyclomatic_complexity": 3,
        "id": 73
    },
    {
        "task_id": "HumanEval/74",
        "prompt": "\ndef total_match(lst1, lst2):\n    '''\n    Write a function that accepts two lists of strings and returns the list that has \n    total number of chars in the all strings of the list less than the other list.\n\n    if the two lists have the same number of chars, return the first list.\n\n    Examples\n    total_match([], []) ➞ []\n    total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi']\n    total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin']\n    total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi']\n    total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4']\n    '''\n",
        "entry_point": "total_match",
        "canonical_solution": "    l1 = 0\n    for st in lst1:\n        l1 += len(st)\n    \n    l2 = 0\n    for st in lst2:\n        l2 += len(st)\n    \n    if l1 <= l2:\n        return lst1\n    else:\n        return lst2\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([], []) == []\n    assert candidate(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi']\n    assert candidate(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin']\n    assert candidate(['4'], ['1', '2', '3', '4', '5']) == ['4']\n    assert candidate(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi']\n    assert candidate(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi']\n    assert candidate(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin']\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([], ['this']) == []\n    assert candidate(['this'], []) == []\n\n",
        "line": 16,
        "token": 198,
        "cyclomatic_complexity": 4,
        "id": 74
    },
    {
        "task_id": "HumanEval/75",
        "prompt": "\ndef is_multiply_prime(a):\n    \"\"\"Write a function that returns true if the given number is the multiplication of 3 prime numbers\n    and false otherwise.\n    Knowing that (a) is less then 100. \n    Example:\n    is_multiply_prime(30) == True\n    30 = 2 * 3 * 5\n    \"\"\"\n",
        "entry_point": "is_multiply_prime",
        "canonical_solution": "    def is_prime(n):\n        for j in range(2,n):\n            if n%j == 0:\n                return False\n        return True\n\n    for i in range(2,101):\n        if not is_prime(i): continue\n        for j in range(2,101):\n            if not is_prime(j): continue\n            for k in range(2,101):\n                if not is_prime(k): continue\n                if i*j*k == a: return True\n    return False\n",
        "test": "def check(candidate):\n\n    assert candidate(5) == False\n    assert candidate(30) == True\n    assert candidate(8) == True\n    assert candidate(10) == False\n    assert candidate(125) == True\n    assert candidate(3 * 5 * 7) == True\n    assert candidate(3 * 6 * 7) == False\n    assert candidate(9 * 9 * 9) == False\n    assert candidate(11 * 9 * 9) == False\n    assert candidate(11 * 13 * 7) == True\n\n",
        "line": 10,
        "token": 58,
        "cyclomatic_complexity": 3,
        "id": 75
    },
    {
        "task_id": "HumanEval/76",
        "prompt": "\ndef is_simple_power(x, n):\n    \"\"\"Your task is to write a function that returns true if a number x is a simple\n    power of n and false in other cases.\n    x is a simple power of n if n**int=x\n    For example:\n    is_simple_power(1, 4) => true\n    is_simple_power(2, 2) => true\n    is_simple_power(8, 2) => true\n    is_simple_power(3, 2) => false\n    is_simple_power(3, 1) => false\n    is_simple_power(5, 3) => false\n    \"\"\"\n",
        "entry_point": "is_simple_power",
        "canonical_solution": "    if (n == 1): \n        return (x == 1) \n    power = 1\n    while (power < x): \n        power = power * n \n    return (power == x) \n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(16, 2)== True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(143214, 16)== False, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(4, 2)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(9, 3)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(16, 4)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(24, 2)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(128, 4)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(12, 6)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1, 1)==True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(1, 12)==True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 14,
        "token": 109,
        "cyclomatic_complexity": 3,
        "id": 76
    },
    {
        "task_id": "HumanEval/77",
        "prompt": "\ndef iscube(a):\n    '''\n    Write a function that takes an integer a and returns True \n    if this ingeger is a cube of some integer number.\n    Note: you may assume the input is always valid.\n    Examples:\n    iscube(1) ==> True\n    iscube(2) ==> False\n    iscube(-1) ==> True\n    iscube(64) ==> True\n    iscube(0) ==> True\n    iscube(180) ==> False\n    '''\n",
        "entry_point": "iscube",
        "canonical_solution": "    a = abs(a)\n    return int(round(a ** (1. / 3))) ** 3 == a\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(1) == True, \"First test error: \" + str(candidate(1))\n    assert candidate(2) == False, \"Second test error: \" + str(candidate(2))\n    assert candidate(-1) == True, \"Third test error: \" + str(candidate(-1))\n    assert candidate(64) == True, \"Fourth test error: \" + str(candidate(64))\n    assert candidate(180) == False, \"Fifth test error: \" + str(candidate(180))\n    assert candidate(1000) == True, \"Sixth test error: \" + str(candidate(1000))\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(0) == True, \"1st edge test error: \" + str(candidate(0))\n    assert candidate(1729) == False, \"2nd edge test error: \" + str(candidate(1728))\n\n",
        "line": 15,
        "token": 87,
        "cyclomatic_complexity": 1,
        "id": 77
    },
    {
        "task_id": "HumanEval/78",
        "prompt": "\ndef hex_key(num):\n    \"\"\"You have been tasked to write a function that receives \n    a hexadecimal number as a string and counts the number of hexadecimal \n    digits that are primes (prime number, or a prime, is a natural number \n    greater than 1 that is not a product of two smaller natural numbers).\n    Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.\n    Prime numbers are 2, 3, 5, 7, 11, 13, 17,...\n    So you have to determine a number of the following digits: 2, 3, 5, 7, \n    B (=decimal 11), D (=decimal 13).\n    Note: you may assume the input is always correct or empty string, \n    and symbols A,B,C,D,E,F are always uppercase.\n    Examples:\n    For num = \"AB\" the output should be 1.\n    For num = \"1077E\" the output should be 2.\n    For num = \"ABED1A33\" the output should be 4.\n    For num = \"123456789ABCDEF0\" the output should be 6.\n    For num = \"2020\" the output should be 2.\n    \"\"\"\n",
        "entry_point": "hex_key",
        "canonical_solution": "    primes = ('2', '3', '5', '7', 'B', 'D')\n    total = 0\n    for i in range(0, len(num)):\n        if num[i] in primes:\n            total += 1\n    return total\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"AB\") == 1, \"First test error: \" + str(candidate(\"AB\"))      \n    assert candidate(\"1077E\") == 2, \"Second test error: \" + str(candidate(\"1077E\"))  \n    assert candidate(\"ABED1A33\") == 4, \"Third test error: \" + str(candidate(\"ABED1A33\"))      \n    assert candidate(\"2020\") == 2, \"Fourth test error: \" + str(candidate(\"2020\"))  \n    assert candidate(\"123456789ABCDEF0\") == 6, \"Fifth test error: \" + str(candidate(\"123456789ABCDEF0\"))      \n    assert candidate(\"112233445566778899AABBCCDDEEFF00\") == 12, \"Sixth test error: \" + str(candidate(\"112233445566778899AABBCCDDEEFF00\"))  \n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([]) == 0\n\n",
        "line": 20,
        "token": 241,
        "cyclomatic_complexity": 3,
        "id": 78
    },
    {
        "task_id": "HumanEval/79",
        "prompt": "\ndef decimal_to_binary(decimal):\n    \"\"\"You will be given a number in decimal form and your task is to convert it to\n    binary format. The function should return a string, with each character representing a binary\n    number. Each character in the string will be '0' or '1'.\n\n    There will be an extra couple of characters 'db' at the beginning and at the end of the string.\n    The extra characters are there to help with the format.\n\n    Examples:\n    decimal_to_binary(15)   # returns \"db1111db\"\n    decimal_to_binary(32)   # returns \"db100000db\"\n    \"\"\"\n",
        "entry_point": "decimal_to_binary",
        "canonical_solution": "    return \"db\" + bin(decimal)[2:] + \"db\"\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(0) == \"db0db\"\n    assert candidate(32) == \"db100000db\"\n    assert candidate(103) == \"db1100111db\"\n    assert candidate(15) == \"db1111db\", \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 14,
        "token": 114,
        "cyclomatic_complexity": 1,
        "id": 79
    },
    {
        "task_id": "HumanEval/80",
        "prompt": "\ndef is_happy(s):\n    \"\"\"You are given a string s.\n    Your task is to check if the string is happy or not.\n    A string is happy if its length is at least 3 and every 3 consecutive letters are distinct\n    For example:\n    is_happy(a) => False\n    is_happy(aa) => False\n    is_happy(abcd) => True\n    is_happy(aabb) => False\n    is_happy(adb) => True\n    is_happy(xyy) => False\n    \"\"\"\n",
        "entry_point": "is_happy",
        "canonical_solution": "    if len(s) < 3:\n      return False\n\n    for i in range(len(s) - 2):\n      \n      if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]:\n        return False\n    return True\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"a\") == False , \"a\"\n    assert candidate(\"aa\") == False , \"aa\"\n    assert candidate(\"abcd\") == True , \"abcd\"\n    assert candidate(\"aabb\") == False , \"aabb\"\n    assert candidate(\"adb\") == True , \"adb\"\n    assert candidate(\"xyy\") == False , \"xyy\"\n    assert candidate(\"iopaxpoi\") == True , \"iopaxpoi\"\n    assert candidate(\"iopaxioi\") == False , \"iopaxioi\"\n",
        "line": 14,
        "token": 94,
        "cyclomatic_complexity": 6,
        "id": 80
    },
    {
        "task_id": "HumanEval/81",
        "prompt": "\ndef numerical_letter_grade(grades):\n    \"\"\"It is the last week of the semester and the teacher has to give the grades\n    to students. The teacher has been making her own algorithm for grading.\n    The only problem is, she has lost the code she used for grading.\n    She has given you a list of GPAs for some students and you have to write \n    a function that can output a list of letter grades using the following table:\n             GPA       |    Letter grade\n              4.0                A+\n            > 3.7                A \n            > 3.3                A- \n            > 3.0                B+\n            > 2.7                B \n            > 2.3                B-\n            > 2.0                C+\n            > 1.7                C\n            > 1.3                C-\n            > 1.0                D+ \n            > 0.7                D \n            > 0.0                D-\n              0.0                E\n    \n\n    Example:\n    grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-']\n    \"\"\"\n",
        "entry_point": "numerical_letter_grade",
        "canonical_solution": "\n   \n    letter_grade = []\n    for gpa in grades:\n        if gpa == 4.0:\n            letter_grade.append(\"A+\")\n        elif gpa > 3.7:\n            letter_grade.append(\"A\")\n        elif gpa > 3.3:\n            letter_grade.append(\"A-\")\n        elif gpa > 3.0:\n            letter_grade.append(\"B+\")\n        elif gpa > 2.7:\n            letter_grade.append(\"B\")\n        elif gpa > 2.3:\n            letter_grade.append(\"B-\")\n        elif gpa > 2.0:\n            letter_grade.append(\"C+\")\n        elif gpa > 1.7:\n            letter_grade.append(\"C\")\n        elif gpa > 1.3:\n            letter_grade.append(\"C-\")\n        elif gpa > 1.0:\n            letter_grade.append(\"D+\")\n        elif gpa > 0.7:\n            letter_grade.append(\"D\")\n        elif gpa > 0.0:\n            letter_grade.append(\"D-\")\n        else:\n            letter_grade.append(\"E\")\n    return letter_grade\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-']\n    assert candidate([1.2]) == ['D+']\n    assert candidate([0.5]) == ['D-']\n    assert candidate([0.0]) == ['E']\n    assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+']\n    assert candidate([0, 0.7]) == ['E', 'D-']\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 27,
        "token": 168,
        "cyclomatic_complexity": 14,
        "id": 81
    },
    {
        "task_id": "HumanEval/82",
        "prompt": "\ndef prime_length(string):\n    \"\"\"Write a function that takes a string and returns True if the string\n    length is a prime number or False otherwise\n    Examples\n    prime_length('Hello') == True\n    prime_length('abcdcba') == True\n    prime_length('kittens') == True\n    prime_length('orange') == False\n    \"\"\"\n",
        "entry_point": "prime_length",
        "canonical_solution": "    l = len(string)\n    if l == 0 or l == 1:\n        return False\n    for i in range(2, l):\n        if l % i == 0:\n            return False\n    return True\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('Hello') == True\n    assert candidate('abcdcba') == True\n    assert candidate('kittens') == True\n    assert candidate('orange') == False\n    assert candidate('wow') == True\n    assert candidate('world') == True\n    assert candidate('MadaM') == True\n    assert candidate('Wow') == True\n    assert candidate('') == False\n    assert candidate('HI') == True\n    assert candidate('go') == True\n    assert candidate('gogo') == False\n    assert candidate('aaaaaaaaaaaaaaa') == False\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('Madam') == True\n    assert candidate('M') == False\n    assert candidate('0') == False\n\n",
        "line": 11,
        "token": 62,
        "cyclomatic_complexity": 5,
        "id": 82
    },
    {
        "task_id": "HumanEval/83",
        "prompt": "\ndef starts_one_ends(n):\n    \"\"\"\n    Given a positive integer n, return the count of the numbers of n-digit\n    positive integers that start or end with 1.\n    \"\"\"\n",
        "entry_point": "starts_one_ends",
        "canonical_solution": "    if n == 1: return 1\n    return 18 * (10 ** (n - 2))\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(1) == 1\n    assert candidate(2) == 18\n    assert candidate(3) == 180\n    assert candidate(4) == 1800\n    assert candidate(5) == 18000\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 7,
        "token": 34,
        "cyclomatic_complexity": 2,
        "id": 83
    },
    {
        "task_id": "HumanEval/84",
        "prompt": "\ndef solve(N):\n    \"\"\"Given a positive integer N, return the total sum of its digits in binary.\n    \n    Example\n        For N = 1000, the sum of digits will be 1 the output should be \"1\".\n        For N = 150, the sum of digits will be 6 the output should be \"110\".\n        For N = 147, the sum of digits will be 12 the output should be \"1100\".\n    \n    Variables:\n        @N integer\n             Constraints: 0 ≤ N ≤ 10000.\n    Output:\n         a string of binary number\n    \"\"\"\n",
        "entry_point": "solve",
        "canonical_solution": "    return bin(sum(int(i) for i in str(N)))[2:]\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(1000) == \"1\", \"Error\"\n    assert candidate(150) == \"110\", \"Error\"\n    assert candidate(147) == \"1100\", \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(333) == \"1001\", \"Error\"\n    assert candidate(963) == \"10010\", \"Error\"\n\n",
        "line": 16,
        "token": 109,
        "cyclomatic_complexity": 2,
        "id": 84
    },
    {
        "task_id": "HumanEval/85",
        "prompt": "\ndef add(lst):\n    \"\"\"Given a non-empty list of integers lst. add the even elements that are at odd indices..\n\n\n    Examples:\n        add([4, 2, 6, 7]) ==> 2 \n    \"\"\"\n",
        "entry_point": "add",
        "canonical_solution": "    return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([4, 88]) == 88\n    assert candidate([4, 5, 6, 7, 2, 122]) == 122\n    assert candidate([4, 0, 6, 7]) == 0\n    assert candidate([4, 4, 6, 8]) == 12\n\n    # Check some edge cases that are easy to work out by hand.\n    \n",
        "line": 9,
        "token": 47,
        "cyclomatic_complexity": 3,
        "id": 85
    },
    {
        "task_id": "HumanEval/86",
        "prompt": "\ndef anti_shuffle(s):\n    \"\"\"\n    Write a function that takes a string and returns an ordered version of it.\n    Ordered version of string, is a string where all words (separated by space)\n    are replaced by a new word where all the characters arranged in\n    ascending order based on ascii value.\n    Note: You should keep the order of words and blank spaces in the sentence.\n\n    For example:\n    anti_shuffle('Hi') returns 'Hi'\n    anti_shuffle('hello') returns 'ehllo'\n    anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor'\n    \"\"\"\n",
        "entry_point": "anti_shuffle",
        "canonical_solution": "    return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('Hi') == 'Hi'\n    assert candidate('hello') == 'ehllo'\n    assert candidate('number') == 'bemnru'\n    assert candidate('abcd') == 'abcd'\n    assert candidate('Hello World!!!') == 'Hello !!!Wdlor'\n    assert candidate('') == ''\n    assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy'\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 15,
        "token": 110,
        "cyclomatic_complexity": 2,
        "id": 86
    },
    {
        "task_id": "HumanEval/87",
        "prompt": "\ndef get_row(lst, x):\n    \"\"\"\n    You are given a 2 dimensional data, as a nested lists,\n    which is similar to matrix, however, unlike matrices,\n    each row may contain a different number of columns.\n    Given lst, and integer x, find integers x in the list,\n    and return list of tuples, [(x1, y1), (x2, y2) ...] such that\n    each tuple is a coordinate - (row, columns), starting with 0.\n    Sort coordinates initially by rows in ascending order.\n    Also, sort coordinates of the row by columns in descending order.\n    \n    Examples:\n    get_row([\n      [1,2,3,4,5,6],\n      [1,2,3,4,1,6],\n      [1,2,3,4,5,1]\n    ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]\n    get_row([], 1) == []\n    get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)]\n    \"\"\"\n",
        "entry_point": "get_row",
        "canonical_solution": "    coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]\n    return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([\n        [1,2,3,4,5,6],\n        [1,2,3,4,1,6],\n        [1,2,3,4,5,1]\n    ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]\n    assert candidate([\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6]\n    ], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)]\n    assert candidate([\n        [1,2,3,4,5,6],\n        [1,2,3,4,5,6],\n        [1,1,3,4,5,6],\n        [1,2,1,4,5,6],\n        [1,2,3,1,5,6],\n        [1,2,3,4,1,6],\n        [1,2,3,4,5,1]\n    ], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)]\n    assert candidate([], 1) == []\n    assert candidate([[1]], 2) == []\n    assert candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 22,
        "token": 213,
        "cyclomatic_complexity": 4,
        "id": 87
    },
    {
        "task_id": "HumanEval/88",
        "prompt": "\ndef sort_array(array):\n    \"\"\"\n    Given an array of non-negative integers, return a copy of the given array after sorting,\n    you will sort the given array in ascending order if the sum( first index value, last index value) is odd,\n    or sort it in descending order if the sum( first index value, last index value) is even.\n\n    Note:\n    * don't change the given array.\n\n    Examples:\n    * sort_array([]) => []\n    * sort_array([5]) => [5]\n    * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5]\n    * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0]\n    \"\"\"\n",
        "entry_point": "sort_array",
        "canonical_solution": "    return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0) \n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([]) == [], \"Error\"\n    assert candidate([5]) == [5], \"Error\"\n    assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5], \"Error\"\n    assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0], \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([2, 1]) == [1, 2], \"Error\"\n    assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87], \"Error\"\n    assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11], \"Error\"\n\n",
        "line": 17,
        "token": 176,
        "cyclomatic_complexity": 2,
        "id": 88
    },
    {
        "task_id": "HumanEval/89",
        "prompt": "\ndef encrypt(s):\n    \"\"\"Create a function encrypt that takes a string as an argument and\n    returns a string encrypted with the alphabet being rotated. \n    The alphabet should be rotated in a manner such that the letters \n    shift down by two multiplied to two places.\n    For example:\n    encrypt('hi') returns 'lm'\n    encrypt('asdfghjkl') returns 'ewhjklnop'\n    encrypt('gf') returns 'kj'\n    encrypt('et') returns 'ix'\n    \"\"\"\n",
        "entry_point": "encrypt",
        "canonical_solution": "    d = 'abcdefghijklmnopqrstuvwxyz'\n    out = ''\n    for c in s:\n        if c in d:\n            out += d[(d.index(c)+2*2) % 26]\n        else:\n            out += c\n    return out\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('hi') == 'lm', \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('asdfghjkl') == 'ewhjklnop', \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('gf') == 'kj', \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('et') == 'ix', \"This prints if this assert fails 1 (good for debugging!)\"\n\n    assert candidate('faewfawefaewg')=='jeiajeaijeiak', \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('hellomyfriend')=='lippsqcjvmirh', \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl', \"This prints if this assert fails 3 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('a')=='e', \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 13,
        "token": 86,
        "cyclomatic_complexity": 3,
        "id": 89
    },
    {
        "task_id": "HumanEval/90",
        "prompt": "\ndef next_smallest(lst):\n    \"\"\"\n    You are given a list of integers.\n    Write a function next_smallest() that returns the 2nd smallest element of the list.\n    Return None if there is no such element.\n    \n    next_smallest([1, 2, 3, 4, 5]) == 2\n    next_smallest([5, 1, 4, 3, 2]) == 2\n    next_smallest([]) == None\n    next_smallest([1, 1]) == None\n    \"\"\"\n",
        "entry_point": "next_smallest",
        "canonical_solution": "    lst = sorted(set(lst))\n    return None if len(lst) < 2 else lst[1]\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1, 2, 3, 4, 5]) == 2\n    assert candidate([5, 1, 4, 3, 2]) == 2\n    assert candidate([]) == None\n    assert candidate([1, 1]) == None\n    assert candidate([1,1,1,1,0]) == 1\n    assert candidate([1, 0**0]) == None\n    assert candidate([-35, 34, 12, -45]) == -35\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 13,
        "token": 94,
        "cyclomatic_complexity": 2,
        "id": 90
    },
    {
        "task_id": "HumanEval/91",
        "prompt": "\ndef is_bored(S):\n    \"\"\"\n    You'll be given a string of words, and your task is to count the number\n    of boredoms. A boredom is a sentence that starts with the word \"I\".\n    Sentences are delimited by '.', '?' or '!'.\n   \n    For example:\n    >>> is_bored(\"Hello world\")\n    0\n    >>> is_bored(\"The sky is blue. The sun is shining. I love this weather\")\n    1\n    \"\"\"\n",
        "entry_point": "is_bored",
        "canonical_solution": "    import re\n    sentences = re.split(r'[.?!]\\s*', S)\n    return sum(sentence[0:2] == 'I ' for sentence in sentences)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"Hello world\") == 0, \"Test 1\"\n    assert candidate(\"Is the sky blue?\") == 0, \"Test 2\"\n    assert candidate(\"I love It !\") == 1, \"Test 3\"\n    assert candidate(\"bIt\") == 0, \"Test 4\"\n    assert candidate(\"I feel good today. I will be productive. will kill It\") == 2, \"Test 5\"\n    assert candidate(\"You and I are going for a walk\") == 0, \"Test 6\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 14,
        "token": 99,
        "cyclomatic_complexity": 2,
        "id": 91
    },
    {
        "task_id": "HumanEval/92",
        "prompt": "\ndef any_int(x, y, z):\n    '''\n    Create a function that takes 3 numbers.\n    Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.\n    Returns false in any other cases.\n    \n    Examples\n    any_int(5, 2, 7) ➞ True\n    \n    any_int(3, 2, 2) ➞ False\n\n    any_int(3, -2, 1) ➞ True\n    \n    any_int(3.6, -2.2, 2) ➞ False\n  \n\n    \n    '''\n",
        "entry_point": "any_int",
        "canonical_solution": "    \n    if isinstance(x,int) and isinstance(y,int) and isinstance(z,int):\n        if (x+y==z) or (x+z==y) or (y+z==x):\n            return True\n        return False\n    return False\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(2, 3, 1)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(2.5, 2, 3)==False, \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate(1.5, 5, 3.5)==False, \"This prints if this assert fails 3 (good for debugging!)\"\n    assert candidate(2, 6, 2)==False, \"This prints if this assert fails 4 (good for debugging!)\"\n    assert candidate(4, 2, 2)==True, \"This prints if this assert fails 5 (good for debugging!)\"\n    assert candidate(2.2, 2.2, 2.2)==False, \"This prints if this assert fails 6 (good for debugging!)\"\n    assert candidate(-4, 6, 2)==True, \"This prints if this assert fails 7 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(2,1,1)==True, \"This prints if this assert fails 8 (also good for debugging!)\"\n    assert candidate(3,4,7)==True, \"This prints if this assert fails 9 (also good for debugging!)\"\n    assert candidate(3.0,4,7)==False, \"This prints if this assert fails 10 (also good for debugging!)\"\n\n",
        "line": 20,
        "token": 93,
        "cyclomatic_complexity": 7,
        "id": 92
    },
    {
        "task_id": "HumanEval/93",
        "prompt": "\ndef encode(message):\n    \"\"\"\n    Write a function that takes a message, and encodes in such a \n    way that it swaps case of all letters, replaces all vowels in \n    the message with the letter that appears 2 places ahead of that \n    vowel in the english alphabet. \n    Assume only letters. \n    \n    Examples:\n    >>> encode('test')\n    'TGST'\n    >>> encode('This is a message')\n    'tHKS KS C MGSSCGG'\n    \"\"\"\n",
        "entry_point": "encode",
        "canonical_solution": "    vowels = \"aeiouAEIOU\"\n    vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])\n    message = message.swapcase()\n    return ''.join([vowels_replace[i] if i in vowels else i for i in message])\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('TEST') == 'tgst', \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('Mudasir') == 'mWDCSKR', \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate('YES') == 'ygs', \"This prints if this assert fails 3 (good for debugging!)\"\n    \n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('This is a message') == 'tHKS KS C MGSSCGG', \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(\"I DoNt KnOw WhAt tO WrItE\") == 'k dQnT kNqW wHcT Tq wRkTg', \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 16,
        "token": 86,
        "cyclomatic_complexity": 4,
        "id": 93
    },
    {
        "task_id": "HumanEval/94",
        "prompt": "\n\ndef skjkasdkd(lst):\n    \"\"\"You are given a list of integers.\n    You need to find the largest prime value and return the sum of its digits.\n\n    Examples:\n    For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10\n    For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25\n    For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13\n    For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11\n    For lst = [0,81,12,3,1,21] the output should be 3\n    For lst = [0,8,1,2,1,7] the output should be 7\n    \"\"\"\n",
        "entry_point": "skjkasdkd",
        "canonical_solution": "    def isPrime(n):\n        for i in range(2,int(n**0.5)+1):\n            if n%i==0:\n                return False\n\n        return True\n    maxx = 0\n    i = 0\n    while i < len(lst):\n        if(lst[i] > maxx and isPrime(lst[i])):\n            maxx = lst[i]\n        i+=1\n    result = sum(int(digit) for digit in str(maxx))\n    return result\n\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13, \"This prints if this assert fails 3 (also good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11, \"This prints if this assert fails 4 (also good for debugging!)\"\n    \n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([0,81,12,3,1,21]) == 3, \"This prints if this assert fails 5 (also good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([0,8,1,2,1,7]) == 7, \"This prints if this assert fails 6 (also good for debugging!)\"\n\n    assert candidate([8191]) == 19, \"This prints if this assert fails 7 (also good for debugging!)\"\n    assert candidate([8191, 123456, 127, 7]) == 19, \"This prints if this assert fails 8 (also good for debugging!)\"\n    assert candidate([127, 97, 8192]) == 10, \"This prints if this assert fails 9 (also good for debugging!)\"\n",
        "line": 15,
        "token": 104,
        "cyclomatic_complexity": 3,
        "id": 94
    },
    {
        "task_id": "HumanEval/95",
        "prompt": "\ndef check_dict_case(dict):\n    \"\"\"\n    Given a dictionary, return True if all keys are strings in lower \n    case or all keys are strings in upper case, else return False.\n    The function should return False is the given dictionary is empty.\n    Examples:\n    check_dict_case({\"a\":\"apple\", \"b\":\"banana\"}) should return True.\n    check_dict_case({\"a\":\"apple\", \"A\":\"banana\", \"B\":\"banana\"}) should return False.\n    check_dict_case({\"a\":\"apple\", 8:\"banana\", \"a\":\"apple\"}) should return False.\n    check_dict_case({\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}) should return False.\n    check_dict_case({\"STATE\":\"NC\", \"ZIP\":\"12345\" }) should return True.\n    \"\"\"\n",
        "entry_point": "check_dict_case",
        "canonical_solution": "    if len(dict.keys()) == 0:\n        return False\n    else:\n        state = \"start\"\n        for key in dict.keys():\n\n            if isinstance(key, str) == False:\n                state = \"mixed\"\n                break\n            if state == \"start\":\n                if key.isupper():\n                    state = \"upper\"\n                elif key.islower():\n                    state = \"lower\"\n                else:\n                    break\n            elif (state == \"upper\" and not key.isupper()) or (state == \"lower\" and not key.islower()):\n                    state = \"mixed\"\n                    break\n            else:\n                break\n        return state == \"upper\" or state == \"lower\" \n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate({\"p\":\"pineapple\", \"b\":\"banana\"}) == True, \"First test error: \" + str(candidate({\"p\":\"pineapple\", \"b\":\"banana\"}))\n    assert candidate({\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}) == False, \"Second test error: \" + str(candidate({\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}))\n    assert candidate({\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}) == False, \"Third test error: \" + str(candidate({\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}))\n    assert candidate({\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}) == False, \"Fourth test error: \" + str(candidate({\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}))\n    assert candidate({\"STATE\":\"NC\", \"ZIP\":\"12345\" }) == True, \"Fifth test error: \" + str(candidate({\"STATE\":\"NC\", \"ZIP\":\"12345\" }))      \n    assert candidate({\"fruit\":\"Orange\", \"taste\":\"Sweet\" }) == True, \"Fourth test error: \" + str(candidate({\"fruit\":\"Orange\", \"taste\":\"Sweet\" }))      \n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate({}) == False, \"1st edge test error: \" + str(candidate({}))\n\n",
        "line": 14,
        "token": 194,
        "cyclomatic_complexity": 12,
        "id": 95
    },
    {
        "task_id": "HumanEval/96",
        "prompt": "\ndef count_up_to(n):\n    \"\"\"Implement a function that takes an non-negative integer and returns an array of the first n\n    integers that are prime numbers and less than n.\n    for example:\n    count_up_to(5) => [2,3]\n    count_up_to(11) => [2,3,5,7]\n    count_up_to(0) => []\n    count_up_to(20) => [2,3,5,7,11,13,17,19]\n    count_up_to(1) => []\n    count_up_to(18) => [2,3,5,7,11,13,17]\n    \"\"\"\n",
        "entry_point": "count_up_to",
        "canonical_solution": "    primes = []\n    for i in range(2, n):\n        is_prime = True\n        for j in range(2, i):\n            if i % j == 0:\n                is_prime = False\n                break\n        if is_prime:\n            primes.append(i)\n    return primes\n\n",
        "test": "def check(candidate):\n\n    assert candidate(5) == [2,3]\n    assert candidate(6) == [2,3,5]\n    assert candidate(7) == [2,3,5]\n    assert candidate(10) == [2,3,5,7]\n    assert candidate(0) == []\n    assert candidate(22) == [2,3,5,7,11,13,17,19]\n    assert candidate(1) == []\n    assert candidate(18) == [2,3,5,7,11,13,17]\n    assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]\n    assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]\n\n",
        "line": 13,
        "token": 92,
        "cyclomatic_complexity": 5,
        "id": 96
    },
    {
        "task_id": "HumanEval/97",
        "prompt": "\ndef multiply(a, b):\n    \"\"\"Complete the function that takes two integers and returns \n    the product of their unit digits.\n    Assume the input is always valid.\n    Examples:\n    multiply(148, 412) should return 16.\n    multiply(19, 28) should return 72.\n    multiply(2020, 1851) should return 0.\n    multiply(14,-15) should return 20.\n    \"\"\"\n",
        "entry_point": "multiply",
        "canonical_solution": "    return abs(a % 10) * abs(b % 10)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(148, 412) == 16, \"First test error: \" + str(candidate(148, 412))                    \n    assert candidate(19, 28) == 72, \"Second test error: \" + str(candidate(19, 28))           \n    assert candidate(2020, 1851) == 0, \"Third test error: \" + str(candidate(2020, 1851))\n    assert candidate(14,-15) == 20, \"Fourth test error: \" + str(candidate(14,-15))      \n    assert candidate(76, 67) == 42, \"Fifth test error: \" + str(candidate(76, 67))      \n    assert candidate(17, 27) == 49, \"Sixth test error: \" + str(candidate(17, 27))      \n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(0, 1) == 0, \"1st edge test error: \" + str(candidate(0, 1))\n    assert candidate(0, 0) == 0, \"2nd edge test error: \" + str(candidate(0, 0))\n\n",
        "line": 12,
        "token": 75,
        "cyclomatic_complexity": 1,
        "id": 97
    },
    {
        "task_id": "HumanEval/98",
        "prompt": "\ndef count_upper(s):\n    \"\"\"\n    Given a string s, count the number of uppercase vowels in even indices.\n    \n    For example:\n    count_upper('aBCdEf') returns 1\n    count_upper('abcdefg') returns 0\n    count_upper('dBBE') returns 0\n    \"\"\"\n",
        "entry_point": "count_upper",
        "canonical_solution": "    count = 0\n    for i in range(0,len(s),2):\n        if s[i] in \"AEIOU\":\n            count += 1\n    return count\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('aBCdEf')  == 1\n    assert candidate('abcdefg') == 0\n    assert candidate('dBBE') == 0\n    assert candidate('B')  == 0\n    assert candidate('U')  == 1\n    assert candidate('') == 0\n    assert candidate('EEEE') == 2\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 11,
        "token": 51,
        "cyclomatic_complexity": 3,
        "id": 98
    },
    {
        "task_id": "HumanEval/99",
        "prompt": "\ndef closest_integer(value):\n    '''\n    Create a function that takes a value (string) representing a number\n    and returns the closest integer to it. If the number is equidistant\n    from two integers, round it away from zero.\n\n    Examples\n    >>> closest_integer(\"10\")\n    10\n    >>> closest_integer(\"15.3\")\n    15\n\n    Note:\n    Rounding away from zero means that if the given number is equidistant\n    from two integers, the one you should return is the one that is the\n    farthest from zero. For example closest_integer(\"14.5\") should\n    return 15 and closest_integer(\"-14.5\") should return -15.\n    '''\n",
        "entry_point": "closest_integer",
        "canonical_solution": "    from math import floor, ceil\n\n    if value.count('.') == 1:\n        # remove trailing zeros\n        while (value[-1] == '0'):\n            value = value[:-1]\n\n    num = float(value)\n    if value[-2:] == '.5':\n        if num > 0:\n            res = ceil(num)\n        else:\n            res = floor(num)\n    elif len(value) > 0:\n        res = int(round(num))\n    else:\n        res = 0\n\n    return res\n\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"10\") == 10, \"Test 1\"\n    assert candidate(\"14.5\") == 15, \"Test 2\"\n    assert candidate(\"-15.5\") == -16, \"Test 3\"\n    assert candidate(\"15.3\") == 15, \"Test 3\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"0\") == 0, \"Test 0\"\n\n",
        "line": 20,
        "token": 121,
        "cyclomatic_complexity": 6,
        "id": 99
    },
    {
        "task_id": "HumanEval/100",
        "prompt": "\ndef make_a_pile(n):\n    \"\"\"\n    Given a positive integer n, you have to make a pile of n levels of stones.\n    The first level has n stones.\n    The number of stones in the next level is:\n        - the next odd number if n is odd.\n        - the next even number if n is even.\n    Return the number of stones in each level in a list, where element at index\n    i represents the number of stones in the level (i+1).\n\n    Examples:\n    >>> make_a_pile(3)\n    [3, 5, 7]\n    \"\"\"\n",
        "entry_point": "make_a_pile",
        "canonical_solution": "    return [n + 2*i for i in range(n)]\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(3) == [3, 5, 7], \"Test 3\"\n    assert candidate(4) == [4,6,8,10], \"Test 4\"\n    assert candidate(5) == [5, 7, 9, 11, 13]\n    assert candidate(6) == [6, 8, 10, 12, 14, 16]\n    assert candidate(8) == [8, 10, 12, 14, 16, 18, 20, 22]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 16,
        "token": 112,
        "cyclomatic_complexity": 2,
        "id": 100
    },
    {
        "task_id": "HumanEval/101",
        "prompt": "\ndef words_string(s):\n    \"\"\"\n    You will be given a string of words separated by commas or spaces. Your task is\n    to split the string into words and return an array of the words.\n    \n    For example:\n    words_string(\"Hi, my name is John\") == [\"Hi\", \"my\", \"name\", \"is\", \"John\"]\n    words_string(\"One, two, three, four, five, six\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"]\n    \"\"\"\n",
        "entry_point": "words_string",
        "canonical_solution": "    if not s:\n        return []\n\n    s_list = []\n\n    for letter in s:\n        if letter == ',':\n            s_list.append(' ')\n        else:\n            s_list.append(letter)\n\n    s_list = \"\".join(s_list)\n    return s_list.split()\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(\"Hi, my name is John\") == [\"Hi\", \"my\", \"name\", \"is\", \"John\"]\n    assert candidate(\"One, two, three, four, five, six\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"]\n    assert candidate(\"Hi, my name\") == [\"Hi\", \"my\", \"name\"]\n    assert candidate(\"One,, two, three, four, five, six,\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(\"\") == []\n    assert candidate(\"ahmed     , gamal\") == [\"ahmed\", \"gamal\"]\n\n",
        "line": 11,
        "token": 121,
        "cyclomatic_complexity": 4,
        "id": 101
    },
    {
        "task_id": "HumanEval/102",
        "prompt": "\ndef choose_num(x, y):\n    \"\"\"This function takes two positive numbers x and y and returns the\n    biggest even integer number that is in the range [x, y] inclusive. If \n    there's no such number, then the function should return -1.\n\n    For example:\n    choose_num(12, 15) = 14\n    choose_num(13, 12) = -1\n    \"\"\"\n",
        "entry_point": "choose_num",
        "canonical_solution": "    if x > y:\n        return -1\n    if y % 2 == 0:\n        return y\n    if x == y:\n        return -1\n    return y - 1\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(12, 15) == 14\n    assert candidate(13, 12) == -1\n    assert candidate(33, 12354) == 12354\n    assert candidate(5234, 5233) == -1\n    assert candidate(6, 29) == 28\n    assert candidate(27, 10) == -1\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(7, 7) == -1\n    assert candidate(546, 546) == 546\n\n",
        "line": 11,
        "token": 75,
        "cyclomatic_complexity": 4,
        "id": 102
    },
    {
        "task_id": "HumanEval/103",
        "prompt": "\ndef rounded_avg(n, m):\n    \"\"\"You are given two positive integers n and m, and your task is to compute the\n    average of the integers from n through m (including n and m). \n    Round the answer to the nearest integer and convert that to binary.\n    If n is greater than m, return -1.\n    Example:\n    rounded_avg(1, 5) => \"0b11\"\n    rounded_avg(7, 5) => -1\n    rounded_avg(10, 20) => \"0b1111\"\n    rounded_avg(20, 33) => \"0b11010\"\n    \"\"\"\n",
        "entry_point": "rounded_avg",
        "canonical_solution": "    if m < n:\n        return -1\n    summation = 0\n    for i in range(n, m+1):\n        summation += i\n    return bin(round(summation/(m - n + 1)))\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(1, 5) == \"0b11\"\n    assert candidate(7, 13) == \"0b1010\"\n    assert candidate(964,977) == \"0b1111001010\"\n    assert candidate(996,997) == \"0b1111100100\"\n    assert candidate(560,851) == \"0b1011000010\"\n    assert candidate(185,546) == \"0b101101110\"\n    assert candidate(362,496) == \"0b110101101\"\n    assert candidate(350,902) == \"0b1001110010\"\n    assert candidate(197,233) == \"0b11010111\"\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(7, 5) == -1\n    assert candidate(5, 1) == -1\n    assert candidate(5, 5) == \"0b101\"\n\n",
        "line": 13,
        "token": 113,
        "cyclomatic_complexity": 3,
        "id": 103
    },
    {
        "task_id": "HumanEval/104",
        "prompt": "\ndef unique_digits(x):\n    \"\"\"Given a list of positive integers x. return a sorted list of all \n    elements that hasn't any even digit.\n\n    Note: Returned list should be sorted in increasing order.\n    \n    For example:\n    >>> unique_digits([15, 33, 1422, 1])\n    [1, 15, 33]\n    >>> unique_digits([152, 323, 1422, 10])\n    []\n    \"\"\"\n",
        "entry_point": "unique_digits",
        "canonical_solution": "    odd_digit_elements = []\n    for i in x:\n        if all (int(c) % 2 == 1 for c in str(i)):\n            odd_digit_elements.append(i)\n    return sorted(odd_digit_elements)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([15, 33, 1422, 1]) == [1, 15, 33]\n    assert candidate([152, 323, 1422, 10]) == []\n    assert candidate([12345, 2033, 111, 151]) == [111, 151]\n    assert candidate([135, 103, 31]) == [31, 135]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 14,
        "token": 86,
        "cyclomatic_complexity": 4,
        "id": 104
    },
    {
        "task_id": "HumanEval/105",
        "prompt": "\ndef by_length(arr):\n    \"\"\"\n    Given an array of integers, sort the integers that are between 1 and 9 inclusive,\n    reverse the resulting array, and then replace each digit by its corresponding name from\n    \"One\", \"Two\", \"Three\", \"Four\", \"Five\", \"Six\", \"Seven\", \"Eight\", \"Nine\".\n\n    For example:\n      arr = [2, 1, 1, 4, 5, 8, 2, 3]   \n            -> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8] \n            -> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1]\n      return [\"Eight\", \"Five\", \"Four\", \"Three\", \"Two\", \"Two\", \"One\", \"One\"]\n    \n      If the array is empty, return an empty array:\n      arr = []\n      return []\n    \n      If the array has any strange number ignore it:\n      arr = [1, -1 , 55] \n            -> sort arr -> [-1, 1, 55]\n            -> reverse arr -> [55, 1, -1]\n      return = ['One']\n    \"\"\"\n",
        "entry_point": "by_length",
        "canonical_solution": "    dic = {\n        1: \"One\",\n        2: \"Two\",\n        3: \"Three\",\n        4: \"Four\",\n        5: \"Five\",\n        6: \"Six\",\n        7: \"Seven\",\n        8: \"Eight\",\n        9: \"Nine\",\n    }\n    sorted_arr = sorted(arr, reverse=True)\n    new_arr = []\n    for var in sorted_arr:\n        try:\n            new_arr.append(dic[var])\n        except:\n            pass\n    return new_arr\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([2, 1, 1, 4, 5, 8, 2, 3]) == [\"Eight\", \"Five\", \"Four\", \"Three\", \"Two\", \"Two\", \"One\", \"One\"], \"Error\"\n    assert candidate([]) == [], \"Error\"\n    assert candidate([1, -1 , 55]) == ['One'], \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([1, -1, 3, 2]) == [\"Three\", \"Two\", \"One\"]\n    assert candidate([9, 4, 8]) == [\"Nine\", \"Eight\", \"Four\"]\n\n",
        "line": 24,
        "token": 251,
        "cyclomatic_complexity": 3,
        "id": 105
    },
    {
        "task_id": "HumanEval/106",
        "prompt": "\ndef f(n):\n    \"\"\" Implement the function f that takes n as a parameter,\n    and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even\n    or the sum of numbers from 1 to i otherwise.\n    i starts from 1.\n    the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).\n    Example:\n    f(5) == [1, 2, 6, 24, 15]\n    \"\"\"\n",
        "entry_point": "f",
        "canonical_solution": "    ret = []\n    for i in range(1,n+1):\n        if i%2 == 0:\n            x = 1\n            for j in range(1,i+1): x *= j\n            ret += [x]\n        else:\n            x = 0\n            for j in range(1,i+1): x += j\n            ret += [x]\n    return ret\n",
        "test": "def check(candidate):\n\n    assert candidate(5) == [1, 2, 6, 24, 15]\n    assert candidate(7) == [1, 2, 6, 24, 15, 720, 28]\n    assert candidate(1) == [1]\n    assert candidate(3) == [1, 2, 6]\n",
        "line": 11,
        "token": 107,
        "cyclomatic_complexity": 5,
        "id": 106
    },
    {
        "task_id": "HumanEval/107",
        "prompt": "\ndef even_odd_palindrome(n):\n    \"\"\"\n    Given a positive integer n, return a tuple that has the number of even and odd\n    integer palindromes that fall within the range(1, n), inclusive.\n\n    Example 1:\n\n        Input: 3\n        Output: (1, 2)\n        Explanation:\n        Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.\n\n    Example 2:\n\n        Input: 12\n        Output: (4, 6)\n        Explanation:\n        Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.\n\n    Note:\n        1. 1 <= n <= 10^3\n        2. returned tuple has the number of even and odd integer palindromes respectively.\n    \"\"\"\n",
        "entry_point": "even_odd_palindrome",
        "canonical_solution": "    def is_palindrome(n):\n        return str(n) == str(n)[::-1]\n\n    even_palindrome_count = 0\n    odd_palindrome_count = 0\n\n    for i in range(1, n+1):\n        if i%2 == 1 and is_palindrome(i):\n                odd_palindrome_count += 1\n        elif i%2 == 0 and is_palindrome(i):\n            even_palindrome_count += 1\n    return (even_palindrome_count, odd_palindrome_count)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(123) == (8, 13)\n    assert candidate(12) == (4, 6)\n    assert candidate(3) == (1, 2)\n    assert candidate(63) == (6, 8)\n    assert candidate(25) == (5, 6)\n    assert candidate(19) == (4, 6)\n    assert candidate(9) == (4, 5), \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1) == (0, 1), \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 25,
        "token": 154,
        "cyclomatic_complexity": 1,
        "id": 107
    },
    {
        "task_id": "HumanEval/108",
        "prompt": "\ndef count_nums(arr):\n    \"\"\"\n    Write a function count_nums which takes an array of integers and returns\n    the number of elements which has a sum of digits > 0.\n    If a number is negative, then its first signed digit will be negative:\n    e.g. -123 has signed digits -1, 2, and 3.\n    >>> count_nums([]) == 0\n    >>> count_nums([-1, 11, -11]) == 1\n    >>> count_nums([1, 1, 2]) == 3\n    \"\"\"\n",
        "entry_point": "count_nums",
        "canonical_solution": "    def digits_sum(n):\n        neg = 1\n        if n < 0: n, neg = -1 * n, -1 \n        n = [int(i) for i in str(n)]\n        n[0] = n[0] * neg\n        return sum(n)\n    return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([]) == 0\n    assert candidate([-1, -2, 0]) == 0\n    assert candidate([1, 1, 2, -2, 3, 4, 5]) == 6\n    assert candidate([1, 6, 9, -6, 0, 1, 5]) == 5\n    assert candidate([1, 100, 98, -7, 1, -1]) == 4\n    assert candidate([12, 23, 34, -45, -56, 0]) == 5\n    assert candidate([-0, 1**0]) == 1\n    assert candidate([1]) == 1\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 12,
        "token": 105,
        "cyclomatic_complexity": 3,
        "id": 108
    },
    {
        "task_id": "HumanEval/109",
        "prompt": "\ndef move_one_ball(arr):\n    \"\"\"We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The\n    numbers in the array will be randomly ordered. Your task is to determine if\n    it is possible to get an array sorted in non-decreasing order by performing \n    the following operation on the given array:\n        You are allowed to perform right shift operation any number of times.\n    \n    One right shift operation means shifting all elements of the array by one\n    position in the right direction. The last element of the array will be moved to\n    the starting position in the array i.e. 0th index. \n\n    If it is possible to obtain the sorted array by performing the above operation\n    then return True else return False.\n    If the given array is empty then return True.\n\n    Note: The given list is guaranteed to have unique elements.\n\n    For Example:\n    \n    move_one_ball([3, 4, 5, 1, 2])==>True\n    Explanation: By performin 2 right shift operations, non-decreasing order can\n                 be achieved for the given array.\n    move_one_ball([3, 5, 4, 1, 2])==>False\n    Explanation:It is not possible to get non-decreasing order for the given\n                array by performing any number of right shift operations.\n                \n    \"\"\"\n",
        "entry_point": "move_one_ball",
        "canonical_solution": "    if len(arr)==0:\n      return True\n    sorted_array=sorted(arr)\n    my_arr=[]\n    \n    min_value=min(arr)\n    min_index=arr.index(min_value)\n    my_arr=arr[min_index:]+arr[0:min_index]\n    for i in range(len(arr)):\n      if my_arr[i]!=sorted_array[i]:\n        return False\n    return True\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([3, 4, 5, 1, 2])==True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([3, 5, 10, 1, 2])==True\n    assert candidate([4, 3, 1, 2])==False\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([3, 5, 4, 1, 2])==False, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([])==True\n",
        "line": 29,
        "token": 248,
        "cyclomatic_complexity": 4,
        "id": 109
    },
    {
        "task_id": "HumanEval/110",
        "prompt": "\ndef exchange(lst1, lst2):\n    \"\"\"In this problem, you will implement a function that takes two lists of numbers,\n    and determines whether it is possible to perform an exchange of elements\n    between them to make lst1 a list of only even numbers.\n    There is no limit on the number of exchanged elements between lst1 and lst2.\n    If it is possible to exchange elements between the lst1 and lst2 to make\n    all the elements of lst1 to be even, return \"YES\".\n    Otherwise, return \"NO\".\n    For example:\n    exchange([1, 2, 3, 4], [1, 2, 3, 4]) => \"YES\"\n    exchange([1, 2, 3, 4], [1, 5, 3, 4]) => \"NO\"\n    It is assumed that the input lists will be non-empty.\n    \"\"\"\n",
        "entry_point": "exchange",
        "canonical_solution": "    odd = 0\n    even = 0\n    for i in lst1:\n        if i%2 == 1:\n            odd += 1\n    for i in lst2:\n        if i%2 == 0:\n            even += 1\n    if even >= odd:\n        return \"YES\"\n    return \"NO\"\n            \n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1, 2, 3, 4], [1, 2, 3, 4]) == \"YES\"\n    assert candidate([1, 2, 3, 4], [1, 5, 3, 4]) == \"NO\"\n    assert candidate([1, 2, 3, 4], [2, 1, 4, 3]) == \"YES\" \n    assert candidate([5, 7, 3], [2, 6, 4]) == \"YES\"\n    assert candidate([5, 7, 3], [2, 6, 3]) == \"NO\" \n    assert candidate([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == \"NO\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([100, 200], [200, 200]) == \"YES\"\n\n",
        "line": 15,
        "token": 171,
        "cyclomatic_complexity": 6,
        "id": 110
    },
    {
        "task_id": "HumanEval/111",
        "prompt": "\ndef histogram(test):\n    \"\"\"Given a string representing a space separated lowercase letters, return a dictionary\n    of the letter with the most repetition and containing the corresponding count.\n    If several letters have the same occurrence, return all of them.\n    \n    Example:\n    histogram('a b c') == {'a': 1, 'b': 1, 'c': 1}\n    histogram('a b b a') == {'a': 2, 'b': 2}\n    histogram('a b c a b') == {'a': 2, 'b': 2}\n    histogram('b b b b a') == {'b': 4}\n    histogram('') == {}\n\n    \"\"\"\n",
        "entry_point": "histogram",
        "canonical_solution": "    dict1={}\n    list1=test.split(\" \")\n    t=0\n\n    for i in list1:\n        if(list1.count(i)>t) and i!='':\n            t=list1.count(i)\n    if t>0:\n        for i in list1:\n            if(list1.count(i)==t):\n                \n                dict1[i]=t\n    return dict1\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('a b b a') == {'a':2,'b': 2}, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('a b c a b') == {'a': 2, 'b': 2}, \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate('a b c d g') == {'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1}, \"This prints if this assert fails 3 (good for debugging!)\"\n    assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, \"This prints if this assert fails 4 (good for debugging!)\"\n    assert candidate('b b b b a') == {'b': 4}, \"This prints if this assert fails 5 (good for debugging!)\"\n    assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, \"This prints if this assert fails 6 (good for debugging!)\"\n    \n    \n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('') == {}, \"This prints if this assert fails 7 (also good for debugging!)\"\n    assert candidate('a') == {'a': 1}, \"This prints if this assert fails 8 (also good for debugging!)\"\n\n",
        "line": 15,
        "token": 153,
        "cyclomatic_complexity": 7,
        "id": 111
    },
    {
        "task_id": "HumanEval/112",
        "prompt": "\ndef reverse_delete(s,c):\n    \"\"\"Task\n    We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c\n    then check if the result string is palindrome.\n    A string is called palindrome if it reads the same backward as forward.\n    You should return a tuple containing the result string and True/False for the check.\n    Example\n    For s = \"abcde\", c = \"ae\", the result should be ('bcd',False)\n    For s = \"abcdef\", c = \"b\"  the result should be ('acdef',False)\n    For s = \"abcdedcba\", c = \"ab\", the result should be ('cdedc',True)\n    \"\"\"\n",
        "entry_point": "reverse_delete",
        "canonical_solution": "    s = ''.join([char for char in s if char not in c])\n    return (s,s[::-1] == s)\n",
        "test": "def check(candidate):\n\n    assert candidate(\"abcde\",\"ae\") == ('bcd',False)\n    assert candidate(\"abcdef\", \"b\") == ('acdef',False)\n    assert candidate(\"abcdedcba\",\"ab\") == ('cdedc',True)\n    assert candidate(\"dwik\",\"w\") == ('dik',False)\n    assert candidate(\"a\",\"a\") == ('',True)\n    assert candidate(\"abcdedcba\",\"\") == ('abcdedcba',True)\n    assert candidate(\"abcdedcba\",\"v\") == ('abcdedcba',True)\n    assert candidate(\"vabba\",\"v\") == ('abba',True)\n    assert candidate(\"mamma\", \"mia\") == (\"\", True)\n",
        "line": 13,
        "token": 148,
        "cyclomatic_complexity": 3,
        "id": 112
    },
    {
        "task_id": "HumanEval/113",
        "prompt": "\ndef odd_count(lst):\n    \"\"\"Given a list of strings, where each string consists of only digits, return a list.\n    Each element i of the output should be \"the number of odd elements in the\n    string i of the input.\" where all the i's should be replaced by the number\n    of odd digits in the i'th string of the input.\n\n    >>> odd_count(['1234567'])\n    [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"]\n    >>> odd_count(['3',\"11111111\"])\n    [\"the number of odd elements 1n the str1ng 1 of the 1nput.\",\n     \"the number of odd elements 8n the str8ng 8 of the 8nput.\"]\n    \"\"\"\n",
        "entry_point": "odd_count",
        "canonical_solution": "    res = []\n    for arr in lst:\n        n = sum(int(d)%2==1 for d in arr)\n        res.append(\"the number of odd elements \" + str(n) + \"n the str\"+ str(n) +\"ng \"+ str(n) +\" of the \"+ str(n) +\"nput.\")\n    return res\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(['1234567']) == [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"], \"Test 1\"\n    assert candidate(['3',\"11111111\"]) == [\"the number of odd elements 1n the str1ng 1 of the 1nput.\", \"the number of odd elements 8n the str8ng 8 of the 8nput.\"], \"Test 2\"\n    assert candidate(['271', '137', '314']) == [\n        'the number of odd elements 2n the str2ng 2 of the 2nput.',\n        'the number of odd elements 3n the str3ng 3 of the 3nput.',\n        'the number of odd elements 2n the str2ng 2 of the 2nput.'\n    ]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 14,
        "token": 150,
        "cyclomatic_complexity": 3,
        "id": 113
    },
    {
        "task_id": "HumanEval/114",
        "prompt": "\ndef minSubArraySum(nums):\n    \"\"\"\n    Given an array of integers nums, find the minimum sum of any non-empty sub-array\n    of nums.\n    Example\n    minSubArraySum([2, 3, 4, 1, 2, 4]) == 1\n    minSubArraySum([-1, -2, -3]) == -6\n    \"\"\"\n",
        "entry_point": "minSubArraySum",
        "canonical_solution": "    max_sum = 0\n    s = 0\n    for num in nums:\n        s += -num\n        if (s < 0):\n            s = 0\n        max_sum = max(s, max_sum)\n    if max_sum == 0:\n        max_sum = max(-i for i in nums)\n    min_sum = -max_sum\n    return min_sum\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([2, 3, 4, 1, 2, 4]) == 1, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([-1, -2, -3]) == -6\n    assert candidate([-1, -2, -3, 2, -10]) == -14\n    assert candidate([-9999999999999999]) == -9999999999999999\n    assert candidate([0, 10, 20, 1000000]) == 0\n    assert candidate([-1, -2, -3, 10, -5]) == -6\n    assert candidate([100, -1, -2, -3, 10, -5]) == -6\n    assert candidate([10, 11, 13, 8, 3, 4]) == 3\n    assert candidate([100, -33, 32, -1, 0, -2]) == -33\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([-10]) == -10, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([7]) == 7\n    assert candidate([1, -1]) == -1\n",
        "line": 10,
        "token": 61,
        "cyclomatic_complexity": 5,
        "id": 114
    },
    {
        "task_id": "HumanEval/115",
        "prompt": "\ndef max_fill(grid, capacity):\n    import math\n    \"\"\"\n    You are given a rectangular grid of wells. Each row represents a single well,\n    and each 1 in a row represents a single unit of water.\n    Each well has a corresponding bucket that can be used to extract water from it, \n    and all buckets have the same capacity.\n    Your task is to use the buckets to empty the wells.\n    Output the number of times you need to lower the buckets.\n\n    Example 1:\n        Input: \n            grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]]\n            bucket_capacity : 1\n        Output: 6\n\n    Example 2:\n        Input: \n            grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]]\n            bucket_capacity : 2\n        Output: 5\n    \n    Example 3:\n        Input: \n            grid : [[0,0,0], [0,0,0]]\n            bucket_capacity : 5\n        Output: 0\n\n    Constraints:\n        * all wells have the same length\n        * 1 <= grid.length <= 10^2\n        * 1 <= grid[:,1].length <= 10^2\n        * grid[i][j] -> 0 | 1\n        * 1 <= capacity <= 10\n    \"\"\"\n",
        "entry_point": "max_fill",
        "canonical_solution": "    return sum([math.ceil(sum(arr)/capacity) for arr in grid])\n",
        "test": "def check(candidate):\n\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1) == 6, \"Error\"\n    assert candidate([[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2) == 5, \"Error\"\n    assert candidate([[0,0,0], [0,0,0]], 5) == 0, \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([[1,1,1,1], [1,1,1,1]], 2) == 4, \"Error\"\n    assert candidate([[1,1,1,1], [1,1,1,1]], 9) == 2, \"Error\"\n\n",
        "line": 37,
        "token": 222,
        "cyclomatic_complexity": 2,
        "id": 115
    },
    {
        "task_id": "HumanEval/116",
        "prompt": "\ndef sort_array(arr):\n    \"\"\"\n    In this Kata, you have to sort an array of non-negative integers according to\n    number of ones in their binary representation in ascending order.\n    For similar number of ones, sort based on decimal value.\n\n    It must be implemented like this:\n    >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]\n    >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]\n    >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]\n    \"\"\"\n",
        "entry_point": "sort_array",
        "canonical_solution": "    return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1,5,2,3,4]) == [1, 2, 4, 3, 5]\n    assert candidate([-2,-3,-4,-5,-6]) == [-4, -2, -6, -5, -3]\n    assert candidate([1,0,2,3,4]) == [0, 1, 2, 4, 3]\n    assert candidate([]) == []\n    assert candidate([2,5,77,4,5,3,5,7,2,3,4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]\n    assert candidate([3,6,44,12,32,5]) == [32, 3, 5, 6, 12, 44]\n    assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]\n    assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 13,
        "token": 143,
        "cyclomatic_complexity": 1,
        "id": 116
    },
    {
        "task_id": "HumanEval/117",
        "prompt": "\ndef select_words(s, n):\n    \"\"\"Given a string s and a natural number n, you have been tasked to implement \n    a function that returns a list of all words from string s that contain exactly \n    n consonants, in order these words appear in the string s.\n    If the string s is empty then the function should return an empty list.\n    Note: you may assume the input string contains only letters and spaces.\n    Examples:\n    select_words(\"Mary had a little lamb\", 4) ==> [\"little\"]\n    select_words(\"Mary had a little lamb\", 3) ==> [\"Mary\", \"lamb\"]\n    select_words(\"simple white space\", 2) ==> []\n    select_words(\"Hello world\", 4) ==> [\"world\"]\n    select_words(\"Uncle sam\", 3) ==> [\"Uncle\"]\n    \"\"\"\n",
        "entry_point": "select_words",
        "canonical_solution": "    result = []\n    for word in s.split():\n        n_consonants = 0\n        for i in range(0, len(word)):\n            if word[i].lower() not in [\"a\",\"e\",\"i\",\"o\",\"u\"]:\n                n_consonants += 1 \n        if n_consonants == n:\n            result.append(word)\n    return result\n\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"Mary had a little lamb\", 4) == [\"little\"], \"First test error: \" + str(candidate(\"Mary had a little lamb\", 4))      \n    assert candidate(\"Mary had a little lamb\", 3) == [\"Mary\", \"lamb\"], \"Second test error: \" + str(candidate(\"Mary had a little lamb\", 3))  \n    assert candidate(\"simple white space\", 2) == [], \"Third test error: \" + str(candidate(\"simple white space\", 2))      \n    assert candidate(\"Hello world\", 4) == [\"world\"], \"Fourth test error: \" + str(candidate(\"Hello world\", 4))  \n    assert candidate(\"Uncle sam\", 3) == [\"Uncle\"], \"Fifth test error: \" + str(candidate(\"Uncle sam\", 3))\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"\", 4) == [], \"1st edge test error: \" + str(candidate(\"\", 4))\n    assert candidate(\"a b c d e f\", 1) == [\"b\", \"c\", \"d\", \"f\"], \"2nd edge test error: \" + str(candidate(\"a b c d e f\", 1))\n\n",
        "line": 15,
        "token": 176,
        "cyclomatic_complexity": 5,
        "id": 117
    },
    {
        "task_id": "HumanEval/118",
        "prompt": "\ndef get_closest_vowel(word):\n    \"\"\"You are given a word. Your task is to find the closest vowel that stands between \n    two consonants from the right side of the word (case sensitive).\n    \n    Vowels in the beginning and ending doesn't count. Return empty string if you didn't\n    find any vowel met the above condition. \n\n    You may assume that the given string contains English letter only.\n\n    Example:\n    get_closest_vowel(\"yogurt\") ==> \"u\"\n    get_closest_vowel(\"FULL\") ==> \"U\"\n    get_closest_vowel(\"quick\") ==> \"\"\n    get_closest_vowel(\"ab\") ==> \"\"\n    \"\"\"\n",
        "entry_point": "get_closest_vowel",
        "canonical_solution": "    if len(word) < 3:\n        return \"\"\n\n    vowels = {\"a\", \"e\", \"i\", \"o\", \"u\", \"A\", \"E\", 'O', 'U', 'I'}\n    for i in range(len(word)-2, 0, -1):\n        if word[i] in vowels:\n            if (word[i+1] not in vowels) and (word[i-1] not in vowels):\n                return word[i]\n    return \"\"\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"yogurt\") == \"u\"\n    assert candidate(\"full\") == \"u\"\n    assert candidate(\"easy\") == \"\"\n    assert candidate(\"eAsy\") == \"\"\n    assert candidate(\"ali\") == \"\"\n    assert candidate(\"bad\") == \"a\"\n    assert candidate(\"most\") == \"o\"\n    assert candidate(\"ab\") == \"\"\n    assert candidate(\"ba\") == \"\"\n    assert candidate(\"quick\") == \"\"\n    assert candidate(\"anime\") == \"i\"\n    assert candidate(\"Asia\") == \"\"\n    assert candidate(\"Above\") == \"o\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 17,
        "token": 123,
        "cyclomatic_complexity": 6,
        "id": 118
    },
    {
        "task_id": "HumanEval/119",
        "prompt": "\ndef match_parens(lst):\n    '''\n    You are given a list of two strings, both strings consist of open\n    parentheses '(' or close parentheses ')' only.\n    Your job is to check if it is possible to concatenate the two strings in\n    some order, that the resulting string will be good.\n    A string S is considered to be good if and only if all parentheses in S\n    are balanced. For example: the string '(())()' is good, while the string\n    '())' is not.\n    Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.\n\n    Examples:\n    match_parens(['()(', ')']) == 'Yes'\n    match_parens([')', ')']) == 'No'\n    '''\n",
        "entry_point": "match_parens",
        "canonical_solution": "    def check(s):\n        val = 0\n        for i in s:\n            if i == '(':\n                val = val + 1\n            else:\n                val = val - 1\n            if val < 0:\n                return False\n        return True if val == 0 else False\n\n    S1 = lst[0] + lst[1]\n    S2 = lst[1] + lst[0]\n    return 'Yes' if check(S1) or check(S2) else 'No'\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(['()(', ')']) == 'Yes'\n    assert candidate([')', ')']) == 'No'\n    assert candidate(['(()(())', '())())']) == 'No'\n    assert candidate([')())', '(()()(']) == 'Yes'\n    assert candidate(['(())))', '(()())((']) == 'Yes'\n    assert candidate(['()', '())']) == 'No'\n    assert candidate(['(()(', '()))()']) == 'Yes'\n    assert candidate(['((((', '((())']) == 'No'\n    assert candidate([')(()', '(()(']) == 'No'\n    assert candidate([')(', ')(']) == 'No'\n    \n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(['(', ')']) == 'Yes'\n    assert candidate([')', '(']) == 'Yes' \n\n",
        "line": 17,
        "token": 160,
        "cyclomatic_complexity": 5,
        "id": 119
    },
    {
        "task_id": "HumanEval/120",
        "prompt": "\ndef maximum(arr, k):\n    \"\"\"\n    Given an array arr of integers and a positive integer k, return a sorted list \n    of length k with the maximum k numbers in arr.\n\n    Example 1:\n\n        Input: arr = [-3, -4, 5], k = 3\n        Output: [-4, -3, 5]\n\n    Example 2:\n\n        Input: arr = [4, -4, 4], k = 2\n        Output: [4, 4]\n\n    Example 3:\n\n        Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1\n        Output: [2]\n\n    Note:\n        1. The length of the array will be in the range of [1, 1000].\n        2. The elements in the array will be in the range of [-1000, 1000].\n        3. 0 <= k <= len(arr)\n    \"\"\"\n",
        "entry_point": "maximum",
        "canonical_solution": "    if k == 0:\n        return []\n    arr.sort()\n    ans = arr[-k:]\n    return ans\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([-3, -4, 5], 3) == [-4, -3, 5]\n    assert candidate([4, -4, 4], 2) == [4, 4]\n    assert candidate([-3, 2, 1, 2, -1, -2, 1], 1) == [2]\n    assert candidate([123, -123, 20, 0 , 1, 2, -3], 3) == [2, 20, 123]\n    assert candidate([-123, 20, 0 , 1, 2, -3], 4) == [0, 1, 2, 20]\n    assert candidate([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15]\n    assert candidate([-1, 0, 2, 5, 3, -10], 2) == [3, 5]\n    assert candidate([1, 0, 5, -7], 1) == [5]\n    assert candidate([4, -4], 2) == [-4, 4]\n    assert candidate([-10, 10], 2) == [-10, 10]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1, 2, 3, -23, 243, -400, 0], 0) == []\n\n",
        "line": 27,
        "token": 176,
        "cyclomatic_complexity": 2,
        "id": 120
    },
    {
        "task_id": "HumanEval/121",
        "prompt": "\ndef solution(lst):\n    \"\"\"Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions.\n    \n\n    Examples\n    solution([5, 8, 7, 1]) ==> 12\n    solution([3, 3, 3, 3, 3]) ==> 9\n    solution([30, 13, 24, 321]) ==>0\n    \"\"\"\n",
        "entry_point": "solution",
        "canonical_solution": "    return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([5, 8, 7, 1])    == 12\n    assert candidate([3, 3, 3, 3, 3]) == 9\n    assert candidate([30, 13, 24, 321]) == 0\n    assert candidate([5, 9]) == 5\n    assert candidate([2, 4, 8]) == 0\n    assert candidate([30, 13, 23, 32]) == 23\n    assert candidate([3, 13, 2, 9]) == 3\n\n    # Check some edge cases that are easy to work out by hand.\n\n",
        "line": 11,
        "token": 82,
        "cyclomatic_complexity": 4,
        "id": 121
    },
    {
        "task_id": "HumanEval/122",
        "prompt": "\ndef add_elements(arr, k):\n    \"\"\"\n    Given a non-empty array of integers arr and an integer k, return\n    the sum of the elements with at most two digits from the first k elements of arr.\n\n    Example:\n\n        Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4\n        Output: 24 # sum of 21 + 3\n\n    Constraints:\n        1. 1 <= len(arr) <= 100\n        2. 1 <= k <= len(arr)\n    \"\"\"\n",
        "entry_point": "add_elements",
        "canonical_solution": "    return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1,-2,-3,41,57,76,87,88,99], 3) == -4\n    assert candidate([111,121,3,4000,5,6], 2) == 0\n    assert candidate([11,21,3,90,5,6,7,8,9], 4) == 125\n    assert candidate([111,21,3,4000,5,6,7,8,9], 4) == 24, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1], 1) == 1, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 16,
        "token": 93,
        "cyclomatic_complexity": 3,
        "id": 122
    },
    {
        "task_id": "HumanEval/123",
        "prompt": "\ndef get_odd_collatz(n):\n    \"\"\"\n    Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.\n\n    The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined\n    as follows: start with any positive integer n. Then each term is obtained from the \n    previous term as follows: if the previous term is even, the next term is one half of \n    the previous term. If the previous term is odd, the next term is 3 times the previous\n    term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.\n\n    Note: \n        1. Collatz(1) is [1].\n        2. returned list sorted in increasing order.\n\n    For example:\n    get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.\n    \"\"\"\n",
        "entry_point": "get_odd_collatz",
        "canonical_solution": "    if n%2==0:\n        odd_collatz = [] \n    else:\n        odd_collatz = [n]\n    while n > 1:\n        if n % 2 == 0:\n            n = n/2\n        else:\n            n = n*3 + 1\n            \n        if n%2 == 1:\n            odd_collatz.append(int(n))\n\n    return sorted(odd_collatz)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(14) == [1, 5, 7, 11, 13, 17]\n    assert candidate(5) == [1, 5]\n    assert candidate(12) == [1, 3, 5], \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1) == [1], \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 19,
        "token": 185,
        "cyclomatic_complexity": 5,
        "id": 123
    },
    {
        "task_id": "HumanEval/124",
        "prompt": "\ndef valid_date(date):\n    \"\"\"You have to write a function which validates a given date string and\n    returns True if the date is valid otherwise False.\n    The date is valid if all of the following rules are satisfied:\n    1. The date string is not empty.\n    2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.\n    3. The months should not be less than 1 or higher than 12.\n    4. The date should be in the format: mm-dd-yyyy\n\n    for example: \n    valid_date('03-11-2000') => True\n\n    valid_date('15-01-2012') => False\n\n    valid_date('04-0-2040') => False\n\n    valid_date('06-04-2020') => True\n\n    valid_date('06/04/2020') => False\n    \"\"\"\n",
        "entry_point": "valid_date",
        "canonical_solution": "    try:\n        date = date.strip()\n        month, day, year = date.split('-')\n        month, day, year = int(month), int(day), int(year)\n        if month < 1 or month > 12:\n            return False\n        if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:\n            return False\n        if month in [4,6,9,11] and day < 1 or day > 30:\n            return False\n        if month == 2 and day < 1 or day > 29:\n            return False\n    except:\n        return False\n\n    return True\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('03-11-2000') == True\n\n    assert candidate('15-01-2012') == False\n\n    assert candidate('04-0-2040') == False\n\n    assert candidate('06-04-2020') == True\n\n    assert candidate('01-01-2007') == True\n\n    assert candidate('03-32-2011') == False\n\n    assert candidate('') == False\n\n    assert candidate('04-31-3000') == False\n\n    assert candidate('06-06-2005') == True\n\n    assert candidate('21-31-2000') == False\n\n    assert candidate('04-12-2003') == True\n\n    assert candidate('04122003') == False\n\n    assert candidate('20030412') == False\n\n    assert candidate('2003-04') == False\n\n    assert candidate('2003-04-12') == False\n\n    assert candidate('04-2003') == False\n",
        "line": 22,
        "token": 185,
        "cyclomatic_complexity": 13,
        "id": 124
    },
    {
        "task_id": "HumanEval/125",
        "prompt": "\ndef split_words(txt):\n    '''\n    Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you\n    should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the\n    alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25\n    Examples\n    split_words(\"Hello world!\") ➞ [\"Hello\", \"world!\"]\n    split_words(\"Hello,world!\") ➞ [\"Hello\", \"world!\"]\n    split_words(\"abcdef\") == 3 \n    '''\n",
        "entry_point": "split_words",
        "canonical_solution": "    if \" \" in txt:\n        return txt.split()\n    elif \",\" in txt:\n        return txt.replace(',',' ').split()\n    else:\n        return len([i for i in txt if i.islower() and ord(i)%2 == 0])\n",
        "test": "def check(candidate):\n\n    assert candidate(\"Hello world!\") == [\"Hello\",\"world!\"]\n    assert candidate(\"Hello,world!\") == [\"Hello\",\"world!\"]\n    assert candidate(\"Hello world,!\") == [\"Hello\",\"world,!\"]\n    assert candidate(\"Hello,Hello,world !\") == [\"Hello,Hello,world\",\"!\"]\n    assert candidate(\"abcdef\") == 3\n    assert candidate(\"aaabb\") == 2\n    assert candidate(\"aaaBb\") == 1\n    assert candidate(\"\") == 0\n",
        "line": 12,
        "token": 134,
        "cyclomatic_complexity": 6,
        "id": 125
    },
    {
        "task_id": "HumanEval/126",
        "prompt": "\ndef is_sorted(lst):\n    '''\n    Given a list of numbers, return whether or not they are sorted\n    in ascending order. If list has more than 1 duplicate of the same\n    number, return False. Assume no negative numbers and only integers.\n\n    Examples\n    is_sorted([5]) ➞ True\n    is_sorted([1, 2, 3, 4, 5]) ➞ True\n    is_sorted([1, 3, 2, 4, 5]) ➞ False\n    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True\n    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True\n    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False\n    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True\n    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False\n    '''\n",
        "entry_point": "is_sorted",
        "canonical_solution": "    count_digit = dict([(i, 0) for i in lst])\n    for i in lst:\n        count_digit[i]+=1 \n    if any(count_digit[i] > 2 for i in lst):\n        return False\n    if all(lst[i-1] <= lst[i] for i in range(1, len(lst))):\n        return True\n    else:\n        return False\n    \n    \n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([5]) == True\n    assert candidate([1, 2, 3, 4, 5]) == True\n    assert candidate([1, 3, 2, 4, 5]) == False\n    assert candidate([1, 2, 3, 4, 5, 6]) == True\n    assert candidate([1, 2, 3, 4, 5, 6, 7]) == True\n    assert candidate([1, 3, 2, 4, 5, 6, 7]) == False, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([]) == True, \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate([1]) == True, \"This prints if this assert fails 3 (good for debugging!)\"\n    assert candidate([3, 2, 1]) == False, \"This prints if this assert fails 4 (good for debugging!)\"\n    \n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1, 2, 2, 2, 3, 4]) == False, \"This prints if this assert fails 5 (good for debugging!)\"\n    assert candidate([1, 2, 3, 3, 3, 4]) == False, \"This prints if this assert fails 6 (good for debugging!)\"\n    assert candidate([1, 2, 2, 3, 3, 4]) == True, \"This prints if this assert fails 7 (good for debugging!)\"\n    assert candidate([1, 2, 3, 4]) == True, \"This prints if this assert fails 8 (good for debugging!)\"\n\n",
        "line": 18,
        "token": 185,
        "cyclomatic_complexity": 7,
        "id": 126
    },
    {
        "task_id": "HumanEval/127",
        "prompt": "\ndef intersection(interval1, interval2):\n    \"\"\"You are given two intervals,\n    where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).\n    The given intervals are closed which means that the interval (start, end)\n    includes both start and end.\n    For each given interval, it is assumed that its start is less or equal its end.\n    Your task is to determine whether the length of intersection of these two \n    intervals is a prime number.\n    Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)\n    which its length is 1, which not a prime number.\n    If the length of the intersection is a prime number, return \"YES\",\n    otherwise, return \"NO\".\n    If the two intervals don't intersect, return \"NO\".\n\n\n    [input/output] samples:\n    intersection((1, 2), (2, 3)) ==> \"NO\"\n    intersection((-1, 1), (0, 4)) ==> \"NO\"\n    intersection((-3, -1), (-5, 5)) ==> \"YES\"\n    \"\"\"\n",
        "entry_point": "intersection",
        "canonical_solution": "    def is_prime(num):\n        if num == 1 or num == 0:\n            return False\n        if num == 2:\n            return True\n        for i in range(2, num):\n            if num%i == 0:\n                return False\n        return True\n\n    l = max(interval1[0], interval2[0])\n    r = min(interval1[1], interval2[1])\n    length = r - l\n    if length > 0 and is_prime(length):\n        return \"YES\"\n    return \"NO\"\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate((1, 2), (2, 3)) == \"NO\"\n    assert candidate((-1, 1), (0, 4)) == \"NO\"\n    assert candidate((-3, -1), (-5, 5)) == \"YES\"\n    assert candidate((-2, 2), (-4, 0)) == \"YES\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate((-11, 2), (-1, -1)) == \"NO\"\n    assert candidate((1, 2), (3, 5)) == \"NO\"\n    assert candidate((1, 2), (1, 2)) == \"NO\"\n    assert candidate((-2, -2), (-3, -2)) == \"NO\"\n\n",
        "line": 22,
        "token": 238,
        "cyclomatic_complexity": 6,
        "id": 127
    },
    {
        "task_id": "HumanEval/128",
        "prompt": "\ndef prod_signs(arr):\n    \"\"\"\n    You are given an array arr of integers and you need to return\n    sum of magnitudes of integers multiplied by product of all signs\n    of each number in the array, represented by 1, -1 or 0.\n    Note: return None for empty arr.\n\n    Example:\n    >>> prod_signs([1, 2, 2, -4]) == -9\n    >>> prod_signs([0, 1]) == 0\n    >>> prod_signs([]) == None\n    \"\"\"\n",
        "entry_point": "prod_signs",
        "canonical_solution": "    if not arr: return None\n    prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))\n    return prod * sum([abs(i) for i in arr])\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1, 2, 2, -4]) == -9\n    assert candidate([0, 1]) == 0\n    assert candidate([1, 1, 1, 2, 3, -1, 1]) == -10\n    assert candidate([]) == None\n    assert candidate([2, 4,1, 2, -1, -1, 9]) == 20\n    assert candidate([-1, 1, -1, 1]) == 4\n    assert candidate([-1, 1, 1, 1]) == -4\n    assert candidate([-1, 1, 1, 0]) == 0\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 14,
        "token": 101,
        "cyclomatic_complexity": 4,
        "id": 128
    },
    {
        "task_id": "HumanEval/129",
        "prompt": "\ndef minPath(grid, k):\n    \"\"\"\n    Given a grid with N rows and N columns (N >= 2) and a positive integer k, \n    each cell of the grid contains a value. Every integer in the range [1, N * N]\n    inclusive appears exactly once on the cells of the grid.\n\n    You have to find the minimum path of length k in the grid. You can start\n    from any cell, and in each step you can move to any of the neighbor cells,\n    in other words, you can go to cells which share an edge with you current\n    cell.\n    Please note that a path of length k means visiting exactly k cells (not\n    necessarily distinct).\n    You CANNOT go off the grid.\n    A path A (of length k) is considered less than a path B (of length k) if\n    after making the ordered lists of the values on the cells that A and B go\n    through (let's call them lst_A and lst_B), lst_A is lexicographically less\n    than lst_B, in other words, there exist an integer index i (1 <= i <= k)\n    such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have\n    lst_A[j] = lst_B[j].\n    It is guaranteed that the answer is unique.\n    Return an ordered list of the values on the cells that the minimum path go through.\n\n    Examples:\n\n        Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3\n        Output: [1, 2, 1]\n\n        Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1\n        Output: [1]\n    \"\"\"\n",
        "entry_point": "minPath",
        "canonical_solution": "    n = len(grid)\n    val = n * n + 1\n    for i in range(n):\n        for j in range(n):\n            if grid[i][j] == 1:\n                temp = []\n                if i != 0:\n                    temp.append(grid[i - 1][j])\n\n                if j != 0:\n                    temp.append(grid[i][j - 1])\n\n                if i != n - 1:\n                    temp.append(grid[i + 1][j])\n\n                if j != n - 1:\n                    temp.append(grid[i][j + 1])\n\n                val = min(temp)\n\n    ans = []\n    for i in range(k):\n        if i % 2 == 0:\n            ans.append(1)\n        else:\n            ans.append(val)\n    return ans\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    print\n    assert candidate([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1]\n    assert candidate([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1]\n    assert candidate([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2]\n    assert candidate([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1]\n    assert candidate([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1]\n    assert candidate([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1]\n    assert candidate([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]\n    assert candidate([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3]\n    assert candidate([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2]\n    assert candidate([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3]\n\n",
        "line": 32,
        "token": 340,
        "cyclomatic_complexity": 10,
        "id": 129
    },
    {
        "task_id": "HumanEval/130",
        "prompt": "\ndef tri(n):\n    \"\"\"Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in \n    the last couple centuries. However, what people don't know is Tribonacci sequence.\n    Tribonacci sequence is defined by the recurrence:\n    tri(1) = 3\n    tri(n) = 1 + n / 2, if n is even.\n    tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.\n    For example:\n    tri(2) = 1 + (2 / 2) = 2\n    tri(4) = 3\n    tri(3) = tri(2) + tri(1) + tri(4)\n           = 2 + 3 + 3 = 8 \n    You are given a non-negative integer number n, you have to a return a list of the \n    first n + 1 numbers of the Tribonacci sequence.\n    Examples:\n    tri(3) = [1, 3, 2, 8]\n    \"\"\"\n",
        "entry_point": "tri",
        "canonical_solution": "    if n == 0:\n        return [1]\n    my_tri = [1, 3]\n    for i in range(2, n + 1):\n        if i % 2 == 0:\n            my_tri.append(i / 2 + 1)\n        else:\n            my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2)\n    return my_tri\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    \n    assert candidate(3) == [1, 3, 2.0, 8.0]\n    assert candidate(4) == [1, 3, 2.0, 8.0, 3.0]\n    assert candidate(5) == [1, 3, 2.0, 8.0, 3.0, 15.0]\n    assert candidate(6) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0]\n    assert candidate(7) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0]\n    assert candidate(8) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0]\n    assert candidate(9) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0]\n    assert candidate(20) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(0) == [1]\n    assert candidate(1) == [1, 3]\n",
        "line": 19,
        "token": 195,
        "cyclomatic_complexity": 4,
        "id": 130
    },
    {
        "task_id": "HumanEval/131",
        "prompt": "\ndef digits(n):\n    \"\"\"Given a positive integer n, return the product of the odd digits.\n    Return 0 if all digits are even.\n    For example:\n    digits(1)  == 1\n    digits(4)  == 0\n    digits(235) == 15\n    \"\"\"\n",
        "entry_point": "digits",
        "canonical_solution": "    product = 1\n    odd_count = 0\n    for digit in str(n):\n        int_digit = int(digit)\n        if int_digit%2 == 1:\n            product= product*int_digit\n            odd_count+=1\n    if odd_count ==0:\n        return 0\n    else:\n        return product\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(5) == 5\n    assert candidate(54) == 5\n    assert candidate(120) ==1\n    assert candidate(5014) == 5\n    assert candidate(98765) == 315\n    assert candidate(5576543) == 2625\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(2468) == 0\n\n",
        "line": 10,
        "token": 55,
        "cyclomatic_complexity": 4,
        "id": 131
    },
    {
        "task_id": "HumanEval/132",
        "prompt": "\ndef is_nested(string):\n    '''\n    Create a function that takes a string as input which contains only square brackets.\n    The function should return True if and only if there is a valid subsequence of brackets \n    where at least one bracket in the subsequence is nested.\n\n    is_nested('[[]]') ➞ True\n    is_nested('[]]]]]]][[[[[]') ➞ False\n    is_nested('[][]') ➞ False\n    is_nested('[]') ➞ False\n    is_nested('[[][]]') ➞ True\n    is_nested('[[]][[') ➞ True\n    '''\n",
        "entry_point": "is_nested",
        "canonical_solution": "    opening_bracket_index = []\n    closing_bracket_index = []\n    for i in range(len(string)):\n        if string[i] == '[':\n            opening_bracket_index.append(i)\n        else:\n            closing_bracket_index.append(i)\n    closing_bracket_index.reverse()\n    cnt = 0\n    i = 0\n    l = len(closing_bracket_index)\n    for idx in opening_bracket_index:\n        if i < l and idx < closing_bracket_index[i]:\n            cnt += 1\n            i += 1\n    return cnt >= 2\n\n    \n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('[[]]') == True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate('[]]]]]]][[[[[]') == False\n    assert candidate('[][]') == False\n    assert candidate(('[]')) == False\n    assert candidate('[[[[]]]]') == True\n    assert candidate('[]]]]]]]]]]') == False\n    assert candidate('[][][[]]') == True\n    assert candidate('[[]') == False\n    assert candidate('[]]') == False\n    assert candidate('[[]][[') == True\n    assert candidate('[[][]]') == True\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('') == False, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate('[[[[[[[[') == False\n    assert candidate(']]]]]]]]') == False\n\n",
        "line": 15,
        "token": 130,
        "cyclomatic_complexity": 6,
        "id": 132
    },
    {
        "task_id": "HumanEval/133",
        "prompt": "\n\ndef sum_squares(lst):\n    \"\"\"You are given a list of numbers.\n    You need to return the sum of squared numbers in the given list,\n    round each element in the list to the upper int(Ceiling) first.\n    Examples:\n    For lst = [1,2,3] the output should be 14\n    For lst = [1,4,9] the output should be 98\n    For lst = [1,3,5,7] the output should be 84\n    For lst = [1.4,4.2,0] the output should be 29\n    For lst = [-2.4,1,1] the output should be 6\n    \n\n    \"\"\"\n",
        "entry_point": "sum_squares",
        "canonical_solution": "    import math\n    squared = 0\n    for i in lst:\n        squared += math.ceil(i)**2\n    return squared\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1,2,3])==14, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1.0,2,3])==14, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1,3,5,7])==84, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1.4,4.2,0])==29, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([-2.4,1,1])==6, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    assert candidate([100,1,15,2])==10230, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([10000,10000])==200000000, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([-1.4,4.6,6.3])==75, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([-1.4,17.9,18.9,19.9])==1086, \"This prints if this assert fails 1 (good for debugging!)\"\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([0])==0, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([-1])==1, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate([-1,1,0])==2, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 16,
        "token": 106,
        "cyclomatic_complexity": 2,
        "id": 133
    },
    {
        "task_id": "HumanEval/134",
        "prompt": "\ndef check_if_last_char_is_a_letter(txt):\n    '''\n    Create a function that returns True if the last character\n    of a given string is an alphabetical character and is not\n    a part of a word, and False otherwise.\n    Note: \"word\" is a group of characters separated by space.\n\n    Examples:\n    check_if_last_char_is_a_letter(\"apple pie\") ➞ False\n    check_if_last_char_is_a_letter(\"apple pi e\") ➞ True\n    check_if_last_char_is_a_letter(\"apple pi e \") ➞ False\n    check_if_last_char_is_a_letter(\"\") ➞ False \n    '''\n",
        "entry_point": "check_if_last_char_is_a_letter",
        "canonical_solution": " \n    check = txt.split(' ')[-1]\n    return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"apple\") == False\n    assert candidate(\"apple pi e\") == True\n    assert candidate(\"eeeee\") == False\n    assert candidate(\"A\") == True\n    assert candidate(\"Pumpkin pie \") == False\n    assert candidate(\"Pumpkin pie 1\") == False\n    assert candidate(\"\") == False\n    assert candidate(\"eeeee e \") == False\n    assert candidate(\"apple pie\") == False\n    assert candidate(\"apple pi e \") == False\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 15,
        "token": 93,
        "cyclomatic_complexity": 3,
        "id": 134
    },
    {
        "task_id": "HumanEval/135",
        "prompt": "\ndef can_arrange(arr):\n    \"\"\"Create a function which returns the largest index of an element which\n    is not greater than or equal to the element immediately preceding it. If\n    no such element exists then return -1. The given array will not contain\n    duplicate values.\n\n    Examples:\n    can_arrange([1,2,4,3,5]) = 3\n    can_arrange([1,2,3]) = -1\n    \"\"\"\n",
        "entry_point": "can_arrange",
        "canonical_solution": "    ind=-1\n    i=1\n    while i<len(arr):\n      if arr[i]<arr[i-1]:\n        ind=i\n      i+=1\n    return ind\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1,2,4,3,5])==3\n    assert candidate([1,2,4,5])==-1\n    assert candidate([1,4,2,5,6,7,8,9,10])==2\n    assert candidate([4,8,5,7,3])==4\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([])==-1\n\n",
        "line": 12,
        "token": 73,
        "cyclomatic_complexity": 3,
        "id": 135
    },
    {
        "task_id": "HumanEval/136",
        "prompt": "\ndef largest_smallest_integers(lst):\n    '''\n    Create a function that returns a tuple (a, b), where 'a' is\n    the largest of negative integers, and 'b' is the smallest\n    of positive integers in a list.\n    If there is no negative or positive integers, return them as None.\n\n    Examples:\n    largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (None, 1)\n    largest_smallest_integers([]) == (None, None)\n    largest_smallest_integers([0]) == (None, None)\n    '''\n",
        "entry_point": "largest_smallest_integers",
        "canonical_solution": "    smallest = list(filter(lambda x: x < 0, lst))\n    largest = list(filter(lambda x: x > 0, lst))\n    return (max(smallest) if smallest else None, min(largest) if largest else None)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([2, 4, 1, 3, 5, 7]) == (None, 1)\n    assert candidate([2, 4, 1, 3, 5, 7, 0]) == (None, 1)\n    assert candidate([1, 3, 2, 4, 5, 6, -2]) == (-2, 1)\n    assert candidate([4, 5, 3, 6, 2, 7, -7]) == (-7, 2)\n    assert candidate([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)\n    assert candidate([]) == (None, None)\n    assert candidate([0]) == (None, None)\n    assert candidate([-1, -3, -5, -6]) == (-1, None)\n    assert candidate([-1, -3, -5, -6, 0]) == (-1, None)\n    assert candidate([-6, -4, -4, -3, 1]) == (-3, 1)\n    assert candidate([-6, -4, -4, -3, -100, 1]) == (-3, 1)\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n",
        "line": 14,
        "token": 109,
        "cyclomatic_complexity": 3,
        "id": 136
    },
    {
        "task_id": "HumanEval/137",
        "prompt": "\ndef compare_one(a, b):\n    \"\"\"\n    Create a function that takes integers, floats, or strings representing\n    real numbers, and returns the larger variable in its given variable type.\n    Return None if the values are equal.\n    Note: If a real number is represented as a string, the floating point might be . or ,\n\n    compare_one(1, 2.5) ➞ 2.5\n    compare_one(1, \"2,3\") ➞ \"2,3\"\n    compare_one(\"5,1\", \"6\") ➞ \"6\"\n    compare_one(\"1\", 1) ➞ None\n    \"\"\"\n",
        "entry_point": "compare_one",
        "canonical_solution": "    temp_a, temp_b = a, b\n    if isinstance(temp_a, str): temp_a = temp_a.replace(',','.')\n    if isinstance(temp_b, str): temp_b = temp_b.replace(',','.')\n    if float(temp_a) == float(temp_b): return None\n    return a if float(temp_a) > float(temp_b) else b \n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(1, 2) == 2\n    assert candidate(1, 2.5) == 2.5\n    assert candidate(2, 3) == 3\n    assert candidate(5, 6) == 6\n    assert candidate(1, \"2,3\") == \"2,3\"\n    assert candidate(\"5,1\", \"6\") == \"6\"\n    assert candidate(\"1\", \"2\") == \"2\"\n    assert candidate(\"1\", 1) == None\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 14,
        "token": 112,
        "cyclomatic_complexity": 5,
        "id": 137
    },
    {
        "task_id": "HumanEval/138",
        "prompt": "\ndef is_equal_to_sum_even(n):\n    \"\"\"Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers\n    Example\n    is_equal_to_sum_even(4) == False\n    is_equal_to_sum_even(6) == False\n    is_equal_to_sum_even(8) == True\n    \"\"\"\n",
        "entry_point": "is_equal_to_sum_even",
        "canonical_solution": "    return n%2 == 0 and n >= 8\n",
        "test": "def check(candidate):\n    assert candidate(4) == False\n    assert candidate(6) == False\n    assert candidate(8) == True\n    assert candidate(10) == True\n    assert candidate(11) == False\n    assert candidate(12) == True\n    assert candidate(13) == False\n    assert candidate(16) == True\n",
        "line": 9,
        "token": 49,
        "cyclomatic_complexity": 2,
        "id": 138
    },
    {
        "task_id": "HumanEval/139",
        "prompt": "\ndef special_factorial(n):\n    \"\"\"The Brazilian factorial is defined as:\n    brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!\n    where n > 0\n\n    For example:\n    >>> special_factorial(4)\n    288\n\n    The function will receive an integer as input and should return the special\n    factorial of this integer.\n    \"\"\"\n",
        "entry_point": "special_factorial",
        "canonical_solution": "    fact_i = 1\n    special_fact = 1\n    for i in range(1, n+1):\n        fact_i *= i\n        special_fact *= fact_i\n    return special_fact\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(4) == 288, \"Test 4\"\n    assert candidate(5) == 34560, \"Test 5\"\n    assert candidate(7) == 125411328000, \"Test 7\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1) == 1, \"Test 1\"\n\n",
        "line": 14,
        "token": 73,
        "cyclomatic_complexity": 2,
        "id": 139
    },
    {
        "task_id": "HumanEval/140",
        "prompt": "\ndef fix_spaces(text):\n    \"\"\"\n    Given a string text, replace all spaces in it with underscores, \n    and if a string has more than 2 consecutive spaces, \n    then replace all consecutive spaces with - \n    \n    fix_spaces(\"Example\") == \"Example\"\n    fix_spaces(\"Example 1\") == \"Example_1\"\n    fix_spaces(\" Example 2\") == \"_Example_2\"\n    fix_spaces(\" Example   3\") == \"_Example-3\"\n    \"\"\"\n",
        "entry_point": "fix_spaces",
        "canonical_solution": "    new_text = \"\"\n    i = 0\n    start, end = 0, 0\n    while i < len(text):\n        if text[i] == \" \":\n            end += 1\n        else:\n            if end - start > 2:\n                new_text += \"-\"+text[i]\n            elif end - start > 0:\n                new_text += \"_\"*(end - start)+text[i]\n            else:\n                new_text += text[i]\n            start, end = i+1, i+1\n        i+=1\n    if end - start > 2:\n        new_text += \"-\"\n    elif end - start > 0:\n        new_text += \"_\"\n    return new_text\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"Example\") == \"Example\", \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(\"Mudasir Hanif \") == \"Mudasir_Hanif_\", \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate(\"Yellow Yellow  Dirty  Fellow\") == \"Yellow_Yellow__Dirty__Fellow\", \"This prints if this assert fails 3 (good for debugging!)\"\n    \n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"Exa   mple\") == \"Exa-mple\", \"This prints if this assert fails 4 (good for debugging!)\"\n    assert candidate(\"   Exa 1 2 2 mple\") == \"-Exa_1_2_2_mple\", \"This prints if this assert fails 4 (good for debugging!)\"\n\n",
        "line": 13,
        "token": 86,
        "cyclomatic_complexity": 7,
        "id": 140
    },
    {
        "task_id": "HumanEval/141",
        "prompt": "\ndef file_name_check(file_name):\n    \"\"\"Create a function which takes a string representing a file's name, and returns\n    'Yes' if the the file's name is valid, and returns 'No' otherwise.\n    A file's name is considered to be valid if and only if all the following conditions \n    are met:\n    - There should not be more than three digits ('0'-'9') in the file's name.\n    - The file's name contains exactly one dot '.'\n    - The substring before the dot should not be empty, and it starts with a letter from \n    the latin alphapet ('a'-'z' and 'A'-'Z').\n    - The substring after the dot should be one of these: ['txt', 'exe', 'dll']\n    Examples:\n    file_name_check(\"example.txt\") # => 'Yes'\n    file_name_check(\"1example.dll\") # => 'No' (the name should start with a latin alphapet letter)\n    \"\"\"\n",
        "entry_point": "file_name_check",
        "canonical_solution": "    suf = ['txt', 'exe', 'dll']\n    lst = file_name.split(sep='.')\n    if len(lst) != 2:\n        return 'No'\n    if not lst[1] in suf:\n        return 'No'\n    if len(lst[0]) == 0:\n        return 'No'\n    if not lst[0][0].isalpha():\n        return 'No'\n    t = len([x for x in lst[0] if x.isdigit()])\n    if t > 3:\n        return 'No'\n    return 'Yes'\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"example.txt\") == 'Yes'\n    assert candidate(\"1example.dll\") == 'No'\n    assert candidate('s1sdf3.asd') == 'No'\n    assert candidate('K.dll') == 'Yes'\n    assert candidate('MY16FILE3.exe') == 'Yes'\n    assert candidate('His12FILE94.exe') == 'No'\n    assert candidate('_Y.txt') == 'No'\n    assert candidate('?aREYA.exe') == 'No'\n    assert candidate('/this_is_valid.dll') == 'No'\n    assert candidate('this_is_valid.wow') == 'No'\n    assert candidate('this_is_valid.txt') == 'Yes'\n    assert candidate('this_is_valid.txtexe') == 'No'\n    assert candidate('#this2_i4s_5valid.ten') == 'No'\n    assert candidate('@this1_is6_valid.exe') == 'No'\n    assert candidate('this_is_12valid.6exe4.txt') == 'No'\n    assert candidate('all.exe.txt') == 'No'\n    assert candidate('I563_No.exe') == 'Yes'\n    assert candidate('Is3youfault.txt') == 'Yes'\n    assert candidate('no_one#knows.dll') == 'Yes'\n    assert candidate('1I563_Yes3.exe') == 'No'\n    assert candidate('I563_Yes3.txtt') == 'No'\n    assert candidate('final..txt') == 'No'\n    assert candidate('final132') == 'No'\n    assert candidate('_f4indsartal132.') == 'No'\n    \n        \n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('.txt') == 'No'\n    assert candidate('s.') == 'No'\n\n",
        "line": 16,
        "token": 189,
        "cyclomatic_complexity": 8,
        "id": 141
    },
    {
        "task_id": "HumanEval/142",
        "prompt": "\n\n\ndef sum_squares(lst):\n    \"\"\"\"\n    This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a \n    multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not \n    change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. \n    \n    Examples:\n    For lst = [1,2,3] the output should be 6\n    For lst = []  the output should be 0\n    For lst = [-1,-5,2,-1,-5]  the output should be -126\n    \"\"\"\n",
        "entry_point": "sum_squares",
        "canonical_solution": "    result =[]\n    for i in range(len(lst)):\n        if i %3 == 0:\n            result.append(lst[i]**2)\n        elif i % 4 == 0 and i%3 != 0:\n            result.append(lst[i]**3)\n        else:\n            result.append(lst[i])\n    return sum(result)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    \n    assert candidate([1,2,3]) == 6\n    assert candidate([1,4,9]) == 14\n    assert candidate([]) == 0\n    assert candidate([1,1,1,1,1,1,1,1,1]) == 9\n    assert candidate([-1,-1,-1,-1,-1,-1,-1,-1,-1]) == -3\n    assert candidate([0]) == 0\n    assert candidate([-1,-5,2,-1,-5]) == -126\n    assert candidate([-56,-99,1,0,-2]) == 3030\n    assert candidate([-1,0,0,0,0,0,0,0,-1]) == 0\n    assert candidate([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196\n    assert candidate([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448\n    \n    \n    # Don't remove this line:\n",
        "line": 15,
        "token": 137,
        "cyclomatic_complexity": 5,
        "id": 142
    },
    {
        "task_id": "HumanEval/143",
        "prompt": "\ndef words_in_sentence(sentence):\n    \"\"\"\n    You are given a string representing a sentence,\n    the sentence contains some words separated by a space,\n    and you have to return a string that contains the words from the original sentence,\n    whose lengths are prime numbers,\n    the order of the words in the new string should be the same as the original one.\n\n    Example 1:\n        Input: sentence = \"This is a test\"\n        Output: \"is\"\n\n    Example 2:\n        Input: sentence = \"lets go for swimming\"\n        Output: \"go for\"\n\n    Constraints:\n        * 1 <= len(sentence) <= 100\n        * sentence contains only letters\n    \"\"\"\n",
        "entry_point": "words_in_sentence",
        "canonical_solution": "    new_lst = []\n    for word in sentence.split():\n        flg = 0\n        if len(word) == 1:\n            flg = 1\n        for i in range(2, len(word)):\n            if len(word)%i == 0:\n                flg = 1\n        if flg == 0 or len(word) == 2:\n            new_lst.append(word)\n    return \" \".join(new_lst)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"This is a test\") == \"is\"\n    assert candidate(\"lets go for swimming\") == \"go for\"\n    assert candidate(\"there is no place available here\") == \"there is no place\"\n    assert candidate(\"Hi I am Hussein\") == \"Hi am Hussein\"\n    assert candidate(\"go for it\") == \"go for it\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"here\") == \"\"\n    assert candidate(\"here is\") == \"is\"\n\n",
        "line": 22,
        "token": 126,
        "cyclomatic_complexity": 7,
        "id": 143
    },
    {
        "task_id": "HumanEval/144",
        "prompt": "\ndef simplify(x, n):\n    \"\"\"Your task is to implement a function that will simplify the expression\n    x * n. The function returns True if x * n evaluates to a whole number and False\n    otherwise. Both x and n, are string representation of a fraction, and have the following format,\n    <numerator>/<denominator> where both numerator and denominator are positive whole numbers.\n\n    You can assume that x, and n are valid fractions, and do not have zero as denominator.\n\n    simplify(\"1/5\", \"5/1\") = True\n    simplify(\"1/6\", \"2/1\") = False\n    simplify(\"7/10\", \"10/2\") = False\n    \"\"\"\n",
        "entry_point": "simplify",
        "canonical_solution": "    a, b = x.split(\"/\")\n    c, d = n.split(\"/\")\n    numerator = int(a) * int(c)\n    denom = int(b) * int(d)\n    if (numerator/denom == int(numerator/denom)):\n        return True\n    return False\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"1/5\", \"5/1\") == True, 'test1'\n    assert candidate(\"1/6\", \"2/1\") == False, 'test2'\n    assert candidate(\"5/1\", \"3/1\") == True, 'test3'\n    assert candidate(\"7/10\", \"10/2\") == False, 'test4'\n    assert candidate(\"2/10\", \"50/10\") == True, 'test5'\n    assert candidate(\"7/2\", \"4/2\") == True, 'test6'\n    assert candidate(\"11/6\", \"6/1\") == True, 'test7'\n    assert candidate(\"2/3\", \"5/2\") == False, 'test8'\n    assert candidate(\"5/2\", \"3/5\") == False, 'test9'\n    assert candidate(\"2/4\", \"8/4\") == True, 'test10'\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"2/4\", \"4/2\") == True, 'test11'\n    assert candidate(\"1/5\", \"5/1\") == True, 'test12'\n    assert candidate(\"1/5\", \"1/5\") == False, 'test13'\n\n",
        "line": 14,
        "token": 137,
        "cyclomatic_complexity": 2,
        "id": 144
    },
    {
        "task_id": "HumanEval/145",
        "prompt": "\ndef order_by_points(nums):\n    \"\"\"\n    Write a function which sorts the given list of integers\n    in ascending order according to the sum of their digits.\n    Note: if there are several items with similar sum of their digits,\n    order them based on their index in original list.\n\n    For example:\n    >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]\n    >>> order_by_points([]) == []\n    \"\"\"\n",
        "entry_point": "order_by_points",
        "canonical_solution": "    def digits_sum(n):\n        neg = 1\n        if n < 0: n, neg = -1 * n, -1 \n        n = [int(i) for i in str(n)]\n        n[0] = n[0] * neg\n        return sum(n)\n    return sorted(nums, key=digits_sum)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]\n    assert candidate([1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]\n    assert candidate([]) == []\n    assert candidate([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]\n    assert candidate([1,2,3,4,5,6,7,8,9,10,11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]\n    assert candidate([0,6,6,-76,-21,23,4]) == [-76, -21, 0, 4, 23, 6, 6]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 13,
        "token": 100,
        "cyclomatic_complexity": 3,
        "id": 145
    },
    {
        "task_id": "HumanEval/146",
        "prompt": "\ndef specialFilter(nums):\n    \"\"\"Write a function that takes an array of numbers as input and returns \n    the number of elements in the array that are greater than 10 and both \n    first and last digits of a number are odd (1, 3, 5, 7, 9).\n    For example:\n    specialFilter([15, -73, 14, -15]) => 1 \n    specialFilter([33, -2, -3, 45, 21, 109]) => 2\n    \"\"\"\n",
        "entry_point": "specialFilter",
        "canonical_solution": "    \n    count = 0\n    for num in nums:\n        if num > 10:\n            odd_digits = (1, 3, 5, 7, 9)\n            number_as_string = str(num)\n            if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits:\n                count += 1\n        \n    return count \n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([5, -2, 1, -5]) == 0  \n    assert candidate([15, -73, 14, -15]) == 1\n    assert candidate([33, -2, -3, 45, 21, 109]) == 2\n    assert candidate([43, -12, 93, 125, 121, 109]) == 4\n    assert candidate([71, -2, -33, 75, 21, 19]) == 3\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([1]) == 0              \n    assert candidate([]) == 0                   \n\n",
        "line": 10,
        "token": 97,
        "cyclomatic_complexity": 5,
        "id": 146
    },
    {
        "task_id": "HumanEval/147",
        "prompt": "\ndef get_max_triples(n):\n    \"\"\"\n    You are given a positive integer n. You have to create an integer array a of length n.\n        For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.\n        Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, \n    and a[i] + a[j] + a[k] is a multiple of 3.\n\n    Example :\n        Input: n = 5\n        Output: 1\n        Explanation: \n        a = [1, 3, 7, 13, 21]\n        The only valid triple is (1, 7, 13).\n    \"\"\"\n",
        "entry_point": "get_max_triples",
        "canonical_solution": "    A = [i*i - i + 1 for i in range(1,n+1)]\n    ans = []\n    for i in range(n):\n        for j in range(i+1,n):\n            for k in range(j+1,n):\n                if (A[i]+A[j]+A[k])%3 == 0:\n                    ans += [(A[i],A[j],A[k])]\n    return len(ans)\n",
        "test": "def check(candidate):\n\n    assert candidate(5) == 1\n    assert candidate(6) == 4\n    assert candidate(10) == 36\n    assert candidate(100) == 53361\n",
        "line": 16,
        "token": 146,
        "cyclomatic_complexity": 6,
        "id": 147
    },
    {
        "task_id": "HumanEval/148",
        "prompt": "\ndef bf(planet1, planet2):\n    '''\n    There are eight planets in our solar system: the closerst to the Sun \n    is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, \n    Uranus, Neptune.\n    Write a function that takes two planet names as strings planet1 and planet2. \n    The function should return a tuple containing all planets whose orbits are \n    located between the orbit of planet1 and the orbit of planet2, sorted by \n    the proximity to the sun. \n    The function should return an empty tuple if planet1 or planet2\n    are not correct planet names. \n    Examples\n    bf(\"Jupiter\", \"Neptune\") ==> (\"Saturn\", \"Uranus\")\n    bf(\"Earth\", \"Mercury\") ==> (\"Venus\")\n    bf(\"Mercury\", \"Uranus\") ==> (\"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\")\n    '''\n",
        "entry_point": "bf",
        "canonical_solution": "    planet_names = (\"Mercury\", \"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\", \"Neptune\")\n    if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:\n        return ()\n    planet1_index = planet_names.index(planet1)\n    planet2_index = planet_names.index(planet2)\n    if planet1_index < planet2_index:\n        return (planet_names[planet1_index + 1: planet2_index])\n    else:\n        return (planet_names[planet2_index + 1 : planet1_index])\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"Jupiter\", \"Neptune\") == (\"Saturn\", \"Uranus\"), \"First test error: \" + str(len(candidate(\"Jupiter\", \"Neptune\")))      \n    assert candidate(\"Earth\", \"Mercury\") == (\"Venus\",), \"Second test error: \" + str(candidate(\"Earth\", \"Mercury\"))  \n    assert candidate(\"Mercury\", \"Uranus\") == (\"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\"), \"Third test error: \" + str(candidate(\"Mercury\", \"Uranus\"))      \n    assert candidate(\"Neptune\", \"Venus\") == (\"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\"), \"Fourth test error: \" + str(candidate(\"Neptune\", \"Venus\"))  \n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"Earth\", \"Earth\") == ()\n    assert candidate(\"Mars\", \"Earth\") == ()\n    assert candidate(\"Jupiter\", \"Makemake\") == ()\n\n",
        "line": 18,
        "token": 183,
        "cyclomatic_complexity": 5,
        "id": 148
    },
    {
        "task_id": "HumanEval/149",
        "prompt": "\ndef sorted_list_sum(lst):\n    \"\"\"Write a function that accepts a list of strings as a parameter,\n    deletes the strings that have odd lengths from it,\n    and returns the resulted list with a sorted order,\n    The list is always a list of strings and never an array of numbers,\n    and it may contain duplicates.\n    The order of the list should be ascending by length of each word, and you\n    should return the list sorted by that rule.\n    If two words have the same length, sort the list alphabetically.\n    The function should return a list of strings in sorted order.\n    You may assume that all words will have the same length.\n    For example:\n    assert list_sort([\"aa\", \"a\", \"aaa\"]) => [\"aa\"]\n    assert list_sort([\"ab\", \"a\", \"aaa\", \"cd\"]) => [\"ab\", \"cd\"]\n    \"\"\"\n",
        "entry_point": "sorted_list_sum",
        "canonical_solution": "    lst.sort()\n    new_lst = []\n    for i in lst:\n        if len(i)%2 == 0:\n            new_lst.append(i)\n    return sorted(new_lst, key=len)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([\"aa\", \"a\", \"aaa\"]) == [\"aa\"]\n    assert candidate([\"school\", \"AI\", \"asdf\", \"b\"]) == [\"AI\", \"asdf\", \"school\"]\n    assert candidate([\"d\", \"b\", \"c\", \"a\"]) == []\n    assert candidate([\"d\", \"dcba\", \"abcd\", \"a\"]) == [\"abcd\", \"dcba\"]\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([\"AI\", \"ai\", \"au\"]) == [\"AI\", \"ai\", \"au\"]\n    assert candidate([\"a\", \"b\", \"b\", \"c\", \"c\", \"a\"]) == []\n    assert candidate(['aaaa', 'bbbb', 'dd', 'cc']) == [\"cc\", \"dd\", \"aaaa\", \"bbbb\"]\n\n",
        "line": 17,
        "token": 187,
        "cyclomatic_complexity": 3,
        "id": 149
    },
    {
        "task_id": "HumanEval/150",
        "prompt": "\ndef x_or_y(n, x, y):\n    \"\"\"A simple program which should return the value of x if n is \n    a prime number and should return the value of y otherwise.\n\n    Examples:\n    for x_or_y(7, 34, 12) == 34\n    for x_or_y(15, 8, 5) == 5\n    \n    \"\"\"\n",
        "entry_point": "x_or_y",
        "canonical_solution": "    if n == 1:\n        return y\n    for i in range(2, n):\n        if n % i == 0:\n            return y\n            break\n    else:\n        return x\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(7, 34, 12) == 34\n    assert candidate(15, 8, 5) == 5\n    assert candidate(3, 33, 5212) == 33\n    assert candidate(1259, 3, 52) == 3\n    assert candidate(7919, -1, 12) == -1\n    assert candidate(3609, 1245, 583) == 583\n    assert candidate(91, 56, 129) == 129\n    assert candidate(6, 34, 1234) == 1234\n    \n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1, 2, 0) == 0\n    assert candidate(2, 2, 0) == 2\n\n",
        "line": 11,
        "token": 65,
        "cyclomatic_complexity": 4,
        "id": 150
    },
    {
        "task_id": "HumanEval/151",
        "prompt": "\ndef double_the_difference(lst):\n    '''\n    Given a list of numbers, return the sum of squares of the numbers\n    in the list that are odd. Ignore numbers that are negative or not integers.\n    \n    double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10\n    double_the_difference([-1, -2, 0]) == 0\n    double_the_difference([9, -2]) == 81\n    double_the_difference([0]) == 0  \n   \n    If the input list is empty, return 0.\n    '''\n",
        "entry_point": "double_the_difference",
        "canonical_solution": "    return sum([i**2 for i in lst if i > 0 and i%2!=0 and \".\" not in str(i)])\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([]) == 0 , \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([5, 4]) == 25 , \"This prints if this assert fails 2 (good for debugging!)\"\n    assert candidate([0.1, 0.2, 0.3]) == 0 , \"This prints if this assert fails 3 (good for debugging!)\"\n    assert candidate([-10, -20, -30]) == 0 , \"This prints if this assert fails 4 (good for debugging!)\"\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate([-1, -2, 8]) == 0, \"This prints if this assert fails 5 (also good for debugging!)\"\n    assert candidate([0.2, 3, 5]) == 34, \"This prints if this assert fails 6 (also good for debugging!)\"\n    lst = list(range(-99, 100, 2))\n    odd_sum = sum([i**2 for i in lst if i%2!=0 and i > 0])\n    assert candidate(lst) == odd_sum , \"This prints if this assert fails 7 (good for debugging!)\"\n\n",
        "line": 14,
        "token": 101,
        "cyclomatic_complexity": 5,
        "id": 151
    },
    {
        "task_id": "HumanEval/152",
        "prompt": "\ndef compare(game,guess):\n    \"\"\"I think we all remember that feeling when the result of some long-awaited\n    event is finally known. The feelings and thoughts you have at that moment are\n    definitely worth noting down and comparing.\n    Your task is to determine if a person correctly guessed the results of a number of matches.\n    You are given two arrays of scores and guesses of equal length, where each index shows a match. \n    Return an array of the same length denoting how far off each guess was. If they have guessed correctly,\n    the value is 0, and if not, the value is the absolute difference between the guess and the score.\n    \n    \n    example:\n\n    compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3]\n    compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6]\n    \"\"\"\n",
        "entry_point": "compare",
        "canonical_solution": "    return [abs(x-y) for x,y in zip(game,guess)]\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate([1,2,3,4,5,1],[1,2,3,4,2,-2])==[0,0,0,0,3,3], \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([0,0,0,0,0,0],[0,0,0,0,0,0])==[0,0,0,0,0,0], \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1,2,3],[-1,-2,-3])==[2,4,6], \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate([1,2,3,5],[-1,2,3,4])==[2,0,0,1], \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 17,
        "token": 166,
        "cyclomatic_complexity": 2,
        "id": 152
    },
    {
        "task_id": "HumanEval/153",
        "prompt": "\ndef Strongest_Extension(class_name, extensions):\n    \"\"\"You will be given the name of a class (a string) and a list of extensions.\n    The extensions are to be used to load additional classes to the class. The\n    strength of the extension is as follows: Let CAP be the number of the uppercase\n    letters in the extension's name, and let SM be the number of lowercase letters \n    in the extension's name, the strength is given by the fraction CAP - SM. \n    You should find the strongest extension and return a string in this \n    format: ClassName.StrongestExtensionName.\n    If there are two or more extensions with the same strength, you should\n    choose the one that comes first in the list.\n    For example, if you are given \"Slices\" as the class and a list of the\n    extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should\n    return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension \n    (its strength is -1).\n    Example:\n    for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA'\n    \"\"\"\n",
        "entry_point": "Strongest_Extension",
        "canonical_solution": "    strong = extensions[0]\n    my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()])\n    for s in extensions:\n        val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()])\n        if val > my_val:\n            strong = s\n            my_val = val\n\n    ans = class_name + \".\" + strong\n    return ans\n\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('Watashi', ['tEN', 'niNE', 'eIGHt8OKe']) == 'Watashi.eIGHt8OKe'\n    assert candidate('Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']) == 'Boku123.YEs.WeCaNe'\n    assert candidate('__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']) == '__YESIMHERE.NuLl__'\n    assert candidate('K', ['Ta', 'TAR', 't234An', 'cosSo']) == 'K.TAR'\n    assert candidate('__HAHA', ['Tab', '123', '781345', '-_-']) == '__HAHA.123'\n    assert candidate('YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']) == 'YameRore.okIWILL123'\n    assert candidate('finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']) == 'finNNalLLly.WoW'\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate('_', ['Bb', '91245']) == '_.Bb'\n    assert candidate('Sp', ['671235', 'Bb']) == 'Sp.671235'\n    \n",
        "line": 19,
        "token": 208,
        "cyclomatic_complexity": 15,
        "id": 153
    },
    {
        "task_id": "HumanEval/154",
        "prompt": "\ndef cycpattern_check(a , b):\n    \"\"\"You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word\n    cycpattern_check(\"abcd\",\"abd\") => False\n    cycpattern_check(\"hello\",\"ell\") => True\n    cycpattern_check(\"whassup\",\"psus\") => False\n    cycpattern_check(\"abab\",\"baa\") => True\n    cycpattern_check(\"efef\",\"eeff\") => False\n    cycpattern_check(\"himenss\",\"simen\") => True\n\n    \"\"\"\n",
        "entry_point": "cycpattern_check",
        "canonical_solution": "    l = len(b)\n    pat = b + b\n    for i in range(len(a) - l + 1):\n        for j in range(l + 1):\n            if a[i:i+l] == pat[j:j+l]:\n                return True\n    return False\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    #assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    #assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert  candidate(\"xyzw\",\"xyw\") == False , \"test #0\"\n    assert  candidate(\"yello\",\"ell\") == True , \"test #1\"\n    assert  candidate(\"whattup\",\"ptut\") == False , \"test #2\"\n    assert  candidate(\"efef\",\"fee\") == True , \"test #3\"\n    assert  candidate(\"abab\",\"aabb\") == False , \"test #4\"\n    assert  candidate(\"winemtt\",\"tinem\") == True , \"test #5\"\n\n",
        "line": 12,
        "token": 119,
        "cyclomatic_complexity": 4,
        "id": 154
    },
    {
        "task_id": "HumanEval/155",
        "prompt": "\ndef even_odd_count(num):\n    \"\"\"Given an integer. return a tuple that has the number of even and odd digits respectively.\n\n     Example:\n        even_odd_count(-12) ==> (1, 1)\n        even_odd_count(123) ==> (1, 2)\n    \"\"\"\n",
        "entry_point": "even_odd_count",
        "canonical_solution": "    even_count = 0\n    odd_count = 0\n    for i in str(abs(num)):\n        if int(i)%2==0:\n            even_count +=1\n        else:\n            odd_count +=1\n    return (even_count, odd_count)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(7) == (0, 1)\n    assert candidate(-78) == (1, 1)\n    assert candidate(3452) == (2, 2)\n    assert candidate(346211) == (3, 3)\n    assert candidate(-345821) == (3, 3)\n    assert candidate(-2) == (1, 0)\n    assert candidate(-45347) == (2, 3)\n    assert candidate(0) == (1, 0)\n\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 9,
        "token": 54,
        "cyclomatic_complexity": 3,
        "id": 155
    },
    {
        "task_id": "HumanEval/156",
        "prompt": "\ndef int_to_mini_roman(number):\n    \"\"\"\n    Given a positive integer, obtain its roman numeral equivalent as a string,\n    and return it in lowercase.\n    Restrictions: 1 <= num <= 1000\n\n    Examples:\n    >>> int_to_mini_roman(19) == 'xix'\n    >>> int_to_mini_roman(152) == 'clii'\n    >>> int_to_mini_roman(426) == 'cdxxvi'\n    \"\"\"\n",
        "entry_point": "int_to_mini_roman",
        "canonical_solution": "    num = [1, 4, 5, 9, 10, 40, 50, 90,  \n           100, 400, 500, 900, 1000] \n    sym = [\"I\", \"IV\", \"V\", \"IX\", \"X\", \"XL\",  \n           \"L\", \"XC\", \"C\", \"CD\", \"D\", \"CM\", \"M\"] \n    i = 12\n    res = ''\n    while number: \n        div = number // num[i] \n        number %= num[i] \n        while div: \n            res += sym[i] \n            div -= 1\n        i -= 1\n    return res.lower()\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(19) == 'xix'\n    assert candidate(152) == 'clii'\n    assert candidate(251) == 'ccli'\n    assert candidate(426) == 'cdxxvi'\n    assert candidate(500) == 'd'\n    assert candidate(1) == 'i'\n    assert candidate(4) == 'iv'\n    assert candidate(43) == 'xliii'\n    assert candidate(90) == 'xc'\n    assert candidate(94) == 'xciv'\n    assert candidate(532) == 'dxxxii'\n    assert candidate(900) == 'cm'\n    assert candidate(994) == 'cmxciv'\n    assert candidate(1000) == 'm'\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 13,
        "token": 70,
        "cyclomatic_complexity": 3,
        "id": 156
    },
    {
        "task_id": "HumanEval/157",
        "prompt": "\ndef right_angle_triangle(a, b, c):\n    '''\n    Given the lengths of the three sides of a triangle. Return True if the three\n    sides form a right-angled triangle, False otherwise.\n    A right-angled triangle is a triangle in which one angle is right angle or \n    90 degree.\n    Example:\n    right_angle_triangle(3, 4, 5) == True\n    right_angle_triangle(1, 2, 3) == False\n    '''\n",
        "entry_point": "right_angle_triangle",
        "canonical_solution": "    return a*a == b*b + c*c or b*b == a*a + c*c or c*c == a*a + b*b\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(3, 4, 5) == True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(1, 2, 3) == False\n    assert candidate(10, 6, 8) == True\n    assert candidate(2, 2, 2) == False\n    assert candidate(7, 24, 25) == True\n    assert candidate(10, 5, 7) == False\n    assert candidate(5, 12, 13) == True\n    assert candidate(15, 8, 17) == True\n    assert candidate(48, 55, 73) == True\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(1, 1, 1) == False, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(2, 2, 10) == False\n\n",
        "line": 12,
        "token": 78,
        "cyclomatic_complexity": 3,
        "id": 157
    },
    {
        "task_id": "HumanEval/158",
        "prompt": "\ndef find_max(words):\n    \"\"\"Write a function that accepts a list of strings.\n    The list contains different words. Return the word with maximum number\n    of unique characters. If multiple strings have maximum number of unique\n    characters, return the one which comes first in lexicographical order.\n\n    find_max([\"name\", \"of\", \"string\"]) == \"string\"\n    find_max([\"name\", \"enam\", \"game\"]) == \"enam\"\n    find_max([\"aaaaaaa\", \"bb\" ,\"cc\"]) == \"\"aaaaaaa\"\n    \"\"\"\n",
        "entry_point": "find_max",
        "canonical_solution": "    return sorted(words, key = lambda x: (-len(set(x)), x))[0]\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert (candidate([\"name\", \"of\", \"string\"]) == \"string\"), \"t1\"\n    assert (candidate([\"name\", \"enam\", \"game\"]) == \"enam\"), 't2'\n    assert (candidate([\"aaaaaaa\", \"bb\", \"cc\"]) == \"aaaaaaa\"), 't3'\n    assert (candidate([\"abc\", \"cba\"]) == \"abc\"), 't4'\n    assert (candidate([\"play\", \"this\", \"game\", \"of\",\"footbott\"]) == \"footbott\"), 't5'\n    assert (candidate([\"we\", \"are\", \"gonna\", \"rock\"]) == \"gonna\"), 't6'\n    assert (candidate([\"we\", \"are\", \"a\", \"mad\", \"nation\"]) == \"nation\"), 't7'\n    assert (candidate([\"this\", \"is\", \"a\", \"prrk\"]) == \"this\"), 't8'\n\n    # Check some edge cases that are easy to work out by hand.\n    assert (candidate([\"b\"]) == \"b\"), 't9'\n    assert (candidate([\"play\", \"play\", \"play\"]) == \"play\"), 't10'\n\n",
        "line": 12,
        "token": 119,
        "cyclomatic_complexity": 1,
        "id": 158
    },
    {
        "task_id": "HumanEval/159",
        "prompt": "\ndef eat(number, need, remaining):\n    \"\"\"\n    You're a hungry rabbit, and you already have eaten a certain number of carrots,\n    but now you need to eat more carrots to complete the day's meals.\n    you should return an array of [ total number of eaten carrots after your meals,\n                                    the number of carrots left after your meals ]\n    if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.\n    \n    Example:\n    * eat(5, 6, 10) -> [11, 4]\n    * eat(4, 8, 9) -> [12, 1]\n    * eat(1, 10, 10) -> [11, 0]\n    * eat(2, 11, 5) -> [7, 0]\n    \n    Variables:\n    @number : integer\n        the number of carrots that you have eaten.\n    @need : integer\n        the number of carrots that you need to eat.\n    @remaining : integer\n        the number of remaining carrots thet exist in stock\n    \n    Constrain:\n    * 0 <= number <= 1000\n    * 0 <= need <= 1000\n    * 0 <= remaining <= 1000\n\n    Have fun :)\n    \"\"\"\n",
        "entry_point": "eat",
        "canonical_solution": "    if(need <= remaining):\n        return [ number + need , remaining-need ]\n    else:\n        return [ number + remaining , 0]\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n    assert candidate(5, 6, 10) == [11, 4], \"Error\"\n    assert candidate(4, 8, 9) == [12, 1], \"Error\"\n    assert candidate(1, 10, 10) == [11, 0], \"Error\"\n    assert candidate(2, 11, 5) == [7, 0], \"Error\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n    assert candidate(4, 5, 7) == [9, 2], \"Error\"\n    assert candidate(4, 5, 1) == [5, 0], \"Error\"\n\n",
        "line": 31,
        "token": 232,
        "cyclomatic_complexity": 2,
        "id": 159
    },
    {
        "task_id": "HumanEval/160",
        "prompt": "\ndef do_algebra(operator, operand):\n    \"\"\"\n    Given two lists operator, and operand. The first list has basic algebra operations, and \n    the second list is a list of integers. Use the two given lists to build the algebric \n    expression and return the evaluation of this expression.\n\n    The basic algebra operations:\n    Addition ( + ) \n    Subtraction ( - ) \n    Multiplication ( * ) \n    Floor division ( // ) \n    Exponentiation ( ** ) \n\n    Example:\n    operator['+', '*', '-']\n    array = [2, 3, 4, 5]\n    result = 2 + 3 * 4 - 5\n    => result = 9\n\n    Note:\n        The length of operator list is equal to the length of operand list minus one.\n        Operand is a list of of non-negative integers.\n        Operator list has at least one operator, and operand list has at least two operands.\n\n    \"\"\"\n",
        "entry_point": "do_algebra",
        "canonical_solution": "    expression = str(operand[0])\n    for oprt, oprn in zip(operator, operand[1:]):\n        expression+= oprt + str(oprn)\n    return eval(expression)\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(['**', '*', '+'], [2, 3, 4, 5]) == 37\n    assert candidate(['+', '*', '-'], [2, 3, 4, 5]) == 9\n    assert candidate(['//', '*'], [7, 3, 4]) == 8, \"This prints if this assert fails 1 (good for debugging!)\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 27,
        "token": 167,
        "cyclomatic_complexity": 2,
        "id": 160
    },
    {
        "task_id": "HumanEval/161",
        "prompt": "\ndef solve(s):\n    \"\"\"You are given a string s.\n    if s[i] is a letter, reverse its case from lower to upper or vise versa, \n    otherwise keep it as it is.\n    If the string contains no letters, reverse the string.\n    The function should return the resulted string.\n    Examples\n    solve(\"1234\") = \"4321\"\n    solve(\"ab\") = \"AB\"\n    solve(\"#a@C\") = \"#A@c\"\n    \"\"\"\n",
        "entry_point": "solve",
        "canonical_solution": "    flg = 0\n    idx = 0\n    new_str = list(s)\n    for i in s:\n        if i.isalpha():\n            new_str[idx] = i.swapcase()\n            flg = 1\n        idx += 1\n    s = \"\"\n    for i in new_str:\n        s += i\n    if flg == 0:\n        return s[len(s)::-1]\n    return s\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(\"AsDf\") == \"aSdF\"\n    assert candidate(\"1234\") == \"4321\"\n    assert candidate(\"ab\") == \"AB\"\n    assert candidate(\"#a@C\") == \"#A@c\"\n    assert candidate(\"#AsdfW^45\") == \"#aSDFw^45\"\n    assert candidate(\"#6@2\") == \"2@6#\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert candidate(\"#$a^D\") == \"#$A^d\"\n    assert candidate(\"#ccc\") == \"#CCC\"\n\n    # Don't remove this line:\n",
        "line": 13,
        "token": 101,
        "cyclomatic_complexity": 5,
        "id": 161
    },
    {
        "task_id": "HumanEval/162",
        "prompt": "\ndef string_to_md5(text):\n    \"\"\"\n    Given a string 'text', return its md5 hash equivalent string.\n    If 'text' is an empty string, return None.\n\n    >>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'\n    \"\"\"\n",
        "entry_point": "string_to_md5",
        "canonical_solution": "    import hashlib\n    return hashlib.md5(text.encode('ascii')).hexdigest() if text else None\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'\n    assert candidate('') == None\n    assert candidate('A B C') == '0ef78513b0cb8cef12743f5aeb35f888'\n    assert candidate('password') == '5f4dcc3b5aa765d61d8327deb882cf99'\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True\n\n",
        "line": 9,
        "token": 47,
        "cyclomatic_complexity": 2,
        "id": 162
    },
    {
        "task_id": "HumanEval/163",
        "prompt": "\ndef generate_integers(a, b):\n    \"\"\"\n    Given two positive integers a and b, return the even digits between a\n    and b, in ascending order.\n\n    For example:\n    generate_integers(2, 8) => [2, 4, 6, 8]\n    generate_integers(8, 2) => [2, 4, 6, 8]\n    generate_integers(10, 14) => []\n    \"\"\"\n",
        "entry_point": "generate_integers",
        "canonical_solution": "    lower = max(2, min(a, b))\n    upper = min(8, max(a, b))\n\n    return [i for i in range(lower, upper+1) if i % 2 == 0]\n",
        "test": "def check(candidate):\n\n    # Check some simple cases\n    assert candidate(2, 10) == [2, 4, 6, 8], \"Test 1\"\n    assert candidate(10, 2) == [2, 4, 6, 8], \"Test 2\"\n    assert candidate(132, 2) == [2, 4, 6, 8], \"Test 3\"\n    assert candidate(17,89) == [], \"Test 4\"\n\n    # Check some edge cases that are easy to work out by hand.\n    assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n",
        "line": 12,
        "token": 82,
        "cyclomatic_complexity": 3,
        "id": 163
    }
]