|
import gradio as gr
|
|
import pandas as pd
|
|
from slider import create_subset_ratios_tab
|
|
from change_output import change_file
|
|
import requests
|
|
import os
|
|
import shutil
|
|
import json
|
|
import pandas as pd
|
|
import subprocess
|
|
import plotly.express as px
|
|
def on_confirm(dataset_radio, num_parts_dropdown, token_counts_radio, line_counts_radio, cyclomatic_complexity_radio, problem_type_radio):
|
|
|
|
num_parts = num_parts_dropdown
|
|
token_counts_split = token_counts_radio
|
|
line_counts_split = line_counts_radio
|
|
cyclomatic_complexity_split = cyclomatic_complexity_radio
|
|
|
|
|
|
|
|
dataframes = []
|
|
if token_counts_split=="Equal Frequency Partitioning":
|
|
token_counts_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/token_counts_QS.csv")
|
|
dataframes.append(token_counts_df)
|
|
|
|
if line_counts_split=="Equal Frequency Partitioning":
|
|
line_counts_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/line_counts_QS.csv")
|
|
dataframes.append(line_counts_df)
|
|
|
|
if cyclomatic_complexity_split=="Equal Frequency Partitioning":
|
|
cyclomatic_complexity_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/CC_QS.csv")
|
|
dataframes.append(cyclomatic_complexity_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(dataframes) > 0:
|
|
combined_df = dataframes[0]
|
|
for df in dataframes[1:]:
|
|
combined_df = pd.merge(combined_df, df, left_index=True, right_index=True, suffixes=('', '_y'))
|
|
combined_df = combined_df.loc[:, ~combined_df.columns.str.endswith('_y')]
|
|
return combined_df
|
|
else:
|
|
return pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def execute_specified_python_files(directory_list, file_list):
|
|
for directory in directory_list:
|
|
for py_file in file_list:
|
|
file_path = os.path.join(directory, py_file)
|
|
if os.path.isfile(file_path) and py_file.endswith('.py'):
|
|
print(f"Executing {file_path}...")
|
|
try:
|
|
|
|
subprocess.run(['python', file_path], check=True)
|
|
print(f"{file_path} executed successfully.")
|
|
except subprocess.CalledProcessError as e:
|
|
print(f"Error executing {file_path}: {e}")
|
|
else:
|
|
print(f"File {file_path} does not exist or is not a Python file.")
|
|
|
|
def generate_css(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium, show_low):
|
|
css = """
|
|
#dataframe th {
|
|
background-color: #f2f2f2
|
|
|
|
}
|
|
"""
|
|
colors = ["#e6f7ff", "#ffeecc", "#e6ffe6", "#ffe6e6"]
|
|
categories = [line_counts, token_counts, cyclomatic_complexity]
|
|
category_index = 0
|
|
column_index = 1
|
|
|
|
for category in categories:
|
|
if category:
|
|
if show_high:
|
|
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
|
|
column_index += 1
|
|
if show_medium:
|
|
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
|
|
column_index += 1
|
|
if show_low:
|
|
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
|
|
column_index += 1
|
|
category_index += 1
|
|
|
|
|
|
if problem_type:
|
|
problem_type_color = "#d4f0fc"
|
|
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {problem_type_color}; }}\n"
|
|
css += f"#dataframe td:nth-child({column_index + 2}) {{ background-color: {problem_type_color}; }}\n"
|
|
css += f"#dataframe td:nth-child({column_index + 3}) {{ background-color: {problem_type_color}; }}\n"
|
|
|
|
|
|
css += """
|
|
.gradio-container .dataframe-container::before {
|
|
content: none !important;
|
|
}
|
|
"""
|
|
|
|
return css
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_file(file_obj, user_string, user_number,dataset_choice):
|
|
tmpdir = 'tmpdir'
|
|
|
|
print('临时文件夹地址:{}'.format(tmpdir))
|
|
FilePath = file_obj.name
|
|
print('上传文件的地址:{}'.format(file_obj.name))
|
|
|
|
|
|
shutil.copy(file_obj.name, tmpdir)
|
|
|
|
|
|
FileName = os.path.basename(file_obj.name)
|
|
|
|
print(FilePath)
|
|
|
|
|
|
|
|
with open(FilePath, 'r', encoding="utf-8") as file_obj:
|
|
|
|
outputPath = os.path.join('F:/Desktop/test', FileName)
|
|
data = json.load(file_obj)
|
|
print("data:", data)
|
|
|
|
|
|
with open(outputPath, 'w', encoding="utf-8") as w:
|
|
json.dump(data, w, ensure_ascii=False, indent=4)
|
|
|
|
|
|
file_content = json.dumps(data)
|
|
url = "http://localhost:6222/submit"
|
|
files = {'file': (FileName, file_content, 'application/json')}
|
|
payload = {
|
|
'user_string': user_string,
|
|
'user_number': user_number,
|
|
'dataset_choice':dataset_choice
|
|
}
|
|
|
|
response = requests.post(url, files=files, data=payload)
|
|
print(response)
|
|
|
|
if response.status_code == 200:
|
|
|
|
output_data = response.json()
|
|
|
|
|
|
output_file_path = os.path.join('E:/python-testn/pythonProject3/hh_1/evaluate_result', 'new-model.json')
|
|
with open(output_file_path, 'w', encoding="utf-8") as f:
|
|
json.dump(output_data, f, ensure_ascii=False, indent=4)
|
|
|
|
print(f"File saved at: {output_file_path}")
|
|
|
|
|
|
directory_list = ['/path/to/directory1', '/path/to/directory2']
|
|
file_list = ['file1.py', 'file2.py', 'file3.py']
|
|
|
|
execute_specified_python_files(directory_list, file_list)
|
|
|
|
return {"status": "success", "message": "File received and saved"}
|
|
else:
|
|
return {"status": "error", "message": response.text}
|
|
|
|
|
|
return {"status": "success", "message": response.text}
|
|
|
|
def update_radio_options(token_counts, line_counts, cyclomatic_complexity, problem_type):
|
|
options = []
|
|
if token_counts:
|
|
options.append("Token Counts in Prompt")
|
|
if line_counts:
|
|
options.append("Line Counts in Prompt")
|
|
if cyclomatic_complexity:
|
|
options.append("Cyclomatic Complexity")
|
|
if problem_type:
|
|
options.append("Problem Type")
|
|
|
|
return gr.update(choices=options)
|
|
|
|
def plot_csv(radio,num):
|
|
|
|
|
|
if radio=="Line Counts in Prompt":
|
|
radio_choice="line_counts"
|
|
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
|
|
elif radio=="Token Counts in Prompt":
|
|
radio_choice="token_counts"
|
|
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
|
|
elif radio=="Cyclomatic Complexity":
|
|
radio_choice="CC"
|
|
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
|
|
elif radio=="Problem Type":
|
|
radio_choice="problem_type"
|
|
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/cata_result.csv'
|
|
print("test!")
|
|
|
|
|
|
df = pd.read_csv(file_path)
|
|
|
|
df.set_index('Model', inplace=True)
|
|
|
|
|
|
df_transposed = df.T
|
|
|
|
|
|
fig = px.line(df_transposed, x=df_transposed.index, y=df_transposed.columns,
|
|
title='Model Evaluation Results',
|
|
labels={'value': 'Evaluation Score', 'index': 'Evaluation Metric'},
|
|
color_discrete_sequence=px.colors.qualitative.Plotly)
|
|
|
|
|
|
fig.update_traces(hovertemplate='%{y}')
|
|
|
|
return fig
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as iface:
|
|
gr.HTML("""
|
|
<style>
|
|
.title {
|
|
text-align: center;
|
|
font-size: 3em;
|
|
font-weight: bold;
|
|
margin-bottom: 0.5em;
|
|
}
|
|
.subtitle {
|
|
text-align: center;
|
|
font-size: 2em;
|
|
margin-bottom: 1em;
|
|
}
|
|
</style>
|
|
<div class="title">📊 Demo-Leaderboard 📊</div>
|
|
""")
|
|
|
|
with gr.Tabs() as tabs:
|
|
with gr.TabItem("evaluation_result"):
|
|
with gr.Row():
|
|
with gr.Column(scale=2):
|
|
with gr.Row():
|
|
with gr.Column():
|
|
dataset_radio = gr.Radio(["HumanEval", "MBPP"], label="Select Dataset ")
|
|
|
|
with gr.Row():
|
|
custom_css = """
|
|
<style>
|
|
.markdown-class {
|
|
font-family: 'Helvetica', sans-serif;
|
|
font-size: 17px;
|
|
font-weight: bold;
|
|
color: #333;
|
|
}
|
|
</style>
|
|
"""
|
|
|
|
with gr.Column():
|
|
gr.Markdown(
|
|
f"{custom_css}<div class='markdown-class'> Choose Classification Perspective </div>")
|
|
|
|
token_counts_checkbox = gr.Checkbox(label="Token Counts in Prompt ")
|
|
line_counts_checkbox = gr.Checkbox(label="Line Counts in Prompt ")
|
|
cyclomatic_complexity_checkbox = gr.Checkbox(label="Cyclomatic Complexity ")
|
|
problem_type_checkbox = gr.Checkbox(label="Problem Type ")
|
|
|
|
with gr.Column():
|
|
gr.Markdown("<div class='markdown-class'>Choose Subsets </div>")
|
|
num_parts_dropdown = gr.Dropdown(choices=[3, 4, 5, 6, 7, 8], label="Number of Subsets")
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
token_counts_radio = gr.Radio(
|
|
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
|
|
visible=False)
|
|
with gr.Column():
|
|
line_counts_radio = gr.Radio(
|
|
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
|
|
visible=False)
|
|
with gr.Column():
|
|
cyclomatic_complexity_radio = gr.Radio(
|
|
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
|
|
visible=False)
|
|
|
|
token_counts_checkbox.change(fn=lambda x: toggle_radio(x, token_counts_radio),
|
|
inputs=token_counts_checkbox, outputs=token_counts_radio)
|
|
line_counts_checkbox.change(fn=lambda x: toggle_radio(x, line_counts_radio),
|
|
inputs=line_counts_checkbox, outputs=line_counts_radio)
|
|
cyclomatic_complexity_checkbox.change(fn=lambda x: toggle_radio(x, cyclomatic_complexity_radio),
|
|
inputs=cyclomatic_complexity_checkbox,
|
|
outputs=cyclomatic_complexity_radio)
|
|
|
|
with gr.Tabs() as inner_tabs:
|
|
with gr.TabItem("Leaderboard"):
|
|
dataframe_output = gr.Dataframe(elem_id="dataframe")
|
|
css_output = gr.HTML()
|
|
confirm_button = gr.Button("Confirm ")
|
|
confirm_button.click(fn=on_confirm, inputs=[dataset_radio, num_parts_dropdown, token_counts_radio,
|
|
line_counts_radio, cyclomatic_complexity_radio],
|
|
outputs=dataframe_output)
|
|
|
|
with gr.TabItem("Line chart"):
|
|
select_radio = gr.Radio(choices=[])
|
|
checkboxes = [token_counts_checkbox, line_counts_checkbox, cyclomatic_complexity_checkbox,
|
|
problem_type_checkbox]
|
|
for checkbox in checkboxes:
|
|
checkbox.change(fn=update_radio_options, inputs=checkboxes, outputs=select_radio)
|
|
select_radio.change(fn=plot_csv, inputs=[select_radio, num_parts_dropdown],
|
|
outputs=gr.Plot(label="Line Plot "))
|
|
|
|
with gr.TabItem("upload"):
|
|
gr.Markdown("Upload a JSON file")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
string_input = gr.Textbox(label="Enter the Model Name")
|
|
number_input = gr.Number(label="Select the Number of Samples")
|
|
dataset_choice = gr.Dropdown(label="Select Dataset", choices=["humaneval", "mbpp"])
|
|
with gr.Column():
|
|
file_input = gr.File(label="Upload Generation Result in JSON file")
|
|
upload_button = gr.Button("Confirm and Upload")
|
|
|
|
json_output = gr.JSON(label="")
|
|
|
|
upload_button.click(fn=generate_file, inputs=[file_input, string_input, number_input, dataset_choice],
|
|
outputs=json_output)
|
|
|
|
|
|
|
|
def toggle_radio(checkbox, radio):
|
|
return gr.update(visible=checkbox)
|
|
|
|
|
|
|
|
css = """
|
|
#scale1 {
|
|
border: 1px solid rgba(0, 0, 0, 0.2); /* 使用浅色边框,并带有透明度 */
|
|
padding: 10px; /* 添加内边距 */
|
|
border-radius: 8px; /* 更圆滑的圆角 */
|
|
background-color: #f9f9f9; /* 背景颜色 */
|
|
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); /* 添加阴影效果 */
|
|
}
|
|
}
|
|
"""
|
|
gr.HTML(f"<style>{css}</style>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iface.launch() |