Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import models, transforms, datasets
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
|
9 |
+
model_ft = models.resnet18(pretrained = True)
|
10 |
+
num_ftrs = model_ft.fc.in_features
|
11 |
+
model_ft.fc = nn.Linear(num_ftrs, 2)
|
12 |
+
|
13 |
+
state_dict = torch.load("up500Model.pt", map_location = "cpu")
|
14 |
+
|
15 |
+
model_ft.load_state_dict(state_dict)
|
16 |
+
model_ft.eval()
|
17 |
+
|
18 |
+
img_transforms = transforms.Compose(
|
19 |
+
[
|
20 |
+
transforms.Resize(256),
|
21 |
+
transforms.CenterCrop(224),
|
22 |
+
transforms.ToTensor(),
|
23 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
24 |
+
]
|
25 |
+
)
|
26 |
+
|
27 |
+
labels = ["fiat500", "VW Up!"]
|
28 |
+
def predict(img):
|
29 |
+
inp = img.fromarray(inp.astype("unit8"), "RGB")
|
30 |
+
inp = img_transforms(inp).unsqueeze(0)
|
31 |
+
|
32 |
+
# We don't want to compute gradients
|
33 |
+
with torch.no_grad():
|
34 |
+
preds = torch.np.functional.softmax(model_ft(inp)[0])
|
35 |
+
|
36 |
+
return {labels[i]: preds[i] for i in range(2)}
|
37 |
+
|
38 |
+
interface = gr.Interface(
|
39 |
+
predict,
|
40 |
+
inputs = "image",
|
41 |
+
output = "label",
|
42 |
+
title = "Car classification"
|
43 |
+
)
|
44 |
+
interface.launch()
|