File size: 7,776 Bytes
e4f8ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb5cb3f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

# Importing all necessary libraries ------------------------------------------

from PIL import Image
import gradio as gr

import numpy as np
import pandas as pd

import torch
import torch.nn as nn
from torchvision import models, transforms

import sys, os, distutils.core

import detectron2
from detectron2 import model_zoo
from detectron2.utils.logger import setup_logger
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg


# Model setup ---------------------------------------------------------------

sys.path.insert(0, os.path.abspath("./detectron2"))
setup_logger()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

n_classes = 15
criterion = nn.CrossEntropyLoss()

# Main model
model = models.resnet18(pretrained = True)
for param in model.parameters():
  param.require_grad = False
n_features = model.fc.in_features
model.fc = nn.Linear(n_features, n_classes)
model = model.to(device)

# Viewpoint model
model_viewpoint = models.resnet18(pretrained = True)
for param in model_viewpoint.parameters():
    param.require_grad = False
n_features = model_viewpoint.fc.in_features
model_viewpoint.fc = nn.Linear(n_features, 4)
model_viewpoint = model_viewpoint.to(device)

# Typicality model
model_typicality = models.resnet18(pretrained = True)
for param in model_typicality.parameters():
  param.require_grad = False
n_features = model_typicality.fc.in_features
model_typicality.fc = nn.Linear(n_features, 5)
model_typicality = model_typicality.to(device)
model_Softmax = nn.Softmax(dim = 1)
cos = nn.CosineSimilarity()

# Transformations to the test set
test_transforms = transforms.Compose(
    [transforms.Resize(size = (224, 224)),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]
)


# Helper functions ----------------------------------------------------------

def accuracy(y_pred, y):
    top_pred = y_pred.argmax(1, keepdim = True)
    correct = top_pred.eq(y.view_as(top_pred)).sum()
    acc = correct.float() / y.shape[0]
    return acc

activation = {}
def getActivation(name):
	def hook(model_typicality, input, output):
		activation[name] = output.detach()
	return hook

def save_image_locally(image_array_FN, path_FN = "fake.jpg"):
  image_array_FN = image_array_FN.astype(np.uint8)
  data = Image.fromarray(image_array_FN)
  data.save(path_FN)
  return None


# Prediction ----------------------------------------------------------------

typicality_dict = {"Convertible": 0, "Hatchback": 1, "MPV": 2, "SUV": 3, "Saloon": 4}
classes_dict = {"Convertible_2000": 0, "Convertible_2003": 1, "Convertible_2006": 2, "Convertible_2007": 3, "Convertible_2008": 4, "Convertible_2009": 5, "Convertible_2010": 6, "Convertible_2011": 7, "Convertible_2012": 8, "Convertible_2013": 9, "Convertible_2014": 10, "Convertible_2015": 11, "Convertible_2016": 12, "Convertible_2017": 13, "Hatchback_2000": 14, "Hatchback_2003": 15, "Hatchback_2006": 16, "Hatchback_2007": 17, "Hatchback_2008": 18, "Hatchback_2009": 19, "Hatchback_2010": 20, "Hatchback_2011": 21, "Hatchback_2012": 22, "Hatchback_2013": 23, "Hatchback_2014": 24, "Hatchback_2015": 25, "Hatchback_2016": 26, "Hatchback_2017": 27, "MPV_2000": 28, "MPV_2003": 29, "MPV_2006": 30, "MPV_2007": 31, "MPV_2008": 32, "MPV_2009": 33, "MPV_2010": 34, "MPV_2011": 35, "MPV_2012": 36, "MPV_2013": 37, "MPV_2014": 38, "MPV_2015": 39, "MPV_2016": 40, "MPV_2017": 41, "MPV_2018": 42, "SUV_2000": 43, "SUV_2003": 44, "SUV_2006": 45, "SUV_2007": 46, "SUV_2008": 47, "SUV_2009": 48, "SUV_2010": 49, "SUV_2011": 50, "SUV_2012": 51, "SUV_2013": 52, "SUV_2014": 53, "SUV_2015": 54, "SUV_2016": 55, "SUV_2017": 56, "SUV_2018": 57, "Saloon_2000": 58, "Saloon_2003": 59, "Saloon_2006": 60, "Saloon_2007": 61, "Saloon_2008": 62, "Saloon_2009": 63, "Saloon_2010": 64, "Saloon_2011": 65, "Saloon_2012": 66, "Saloon_2013": 67, "Saloon_2014": 68, "Saloon_2015": 69, "Saloon_2016": 70, "Saloon_2017": 71, "Saloon_2018": 72}
years_dict = {"2000": 0, "2003": 1, "2006": 2, "2007": 3, "2008": 4, "2009": 5, "2010": 6, "2011": 7, "2012": 8, "2013": 9, "2014": 10, "2015": 11, "2016": 12, "2017": 13, "2018": 14}


dist = distutils.core.run_setup("./detectron2/setup.py")
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.model.roi_heads.score_thresh_test = 0.5
cfg.model.weights = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.model.device = "cpu"
predictor = DefaultPredictor(cfg)

def predict(img_F):
	
    target_class = 2

    img = Image.fromarray(img_F.astype("uint8"), "RGB")
	img = np.array(img)

	outputs = predictor(img)
	masks = outputs["instances"].pred_masks

	pred_classes = outputs["instances"].pred_classes.tolist()
	pred_boxes = list(outputs["instances"].pred_boxes)

	areas =  torch.sum(torch.flatten(masks, start_dim = 1), dim = 1).tolist()
	total_area = []
	car_area = []

	for idx in range(len(pred_classes)):
        if pred_classes[idx] == target_class:
            total_area.append(areas[idx])
            car_area.append(idx)

    if len(car_area) == 0:
        img = Image.open("init.jpg")
        img = np.array(img)
        text_output = "Sorry! I am not able to recognize a car in this image. Please upload a new photo!"
        return text_output, img

	local_idx = total_area.index(max(total_area))
	global_idx = car_area[local_idx]

	unsq = outputs["instances"].pred_masks[index_global].unsqueeze(-1).to("cpu")
	mult = torch.tensor(img) * unsq
	
    unsq = unsq.int()
	unsq[unsq == 0] = 255
	unsq[unsq == 1] = 0
	mult = mult + unsq
	res = mult.numpy()

	save_image_locally(res, path_FN = "fake.jpg")

	img_pred =  Image.open("fake.jpg")
	img_pred = test_transforms(img_pred)

	model_viewpoint.load_state_dict(torch.load("model_viewpoint.pt", map_location = torch.device("cpu")))
	model_viewpoint.eval()
	y_pred = model_viewpoint(img_pred.unsqueeze(0))
	y_pred = model_Softmax(y_pred)
	top_pred = y_pred.argmax(1, keepdim = True)

	if top_pred.item() not in [0, 6] :
		img = Image.open("fake.jpg")
		img = np.array(img)
		text_output = "Sorry! I am not able to recognize a frontal view of a car in this image. Please upload a new photo!"
		return text_output, img

	model.load_state_dict(torch.load("model_modernity.pt", map_location = torch.device("cpu")))
	model.eval()
	
    score_t = model(img_pred.unsqueeze(0))
	score_t = model_Softmax(score_t)
	model_year = score_curr.argmax(1, keepdim = True).item()
	score_t = torch.mul(torch.range(0, 14).to(device), torch.reshape(score_t, (-1, ))).sum().item()

	model_typicality.load_state_dict(torch.load("model_typicality.pt", map_location = torch.device("cpu")))
	model_typicality.eval()
	model_part = model_typicality(img_pred.unsqueeze(0))
	model_part = model_Softmax(model_part)
	model_part = model_part.argmax(1, keepdim = True).item()

	model_avg = pd.DataFrame()
	h1 = model_typicality.avgpool.register_forward_hook(getActivation("avgpool"))
	out = model_typicality(img_pred.unsqueeze(0))
	act_pool_t = activation["avgpool"]
	h1.remove()

	model_year = list(years_dict.keys())[list(years_dict.values()).index(model_year)]
	model_part = list(typicality_dict.keys())[list(typicality_dict.values()).index(model_part)]
	true_idx = classes_dict[model_part + "_" + model_year]

	morph_avg = torch.load("morph.pt")
	cos_t = cos(morph_avg[true_idx], act_pool_t).item()

	txt = "Modernity score:", str(round(score_t, 2)), "| Typicality score:", str(round(cos_t, 2))

	return txt, res


# Launching the app ---------------------------------------------------------

interface  = gr.Interface(
    predict, 
    inputs = "image", 
    outputs = ["text", gr.Image(type = "pil")], 
    title = "Let's classify your car!")
interface.launch()