Spaces:
Runtime error
Runtime error
File size: 7,776 Bytes
e4f8ef6 bb5cb3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# Importing all necessary libraries ------------------------------------------
from PIL import Image
import gradio as gr
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torchvision import models, transforms
import sys, os, distutils.core
import detectron2
from detectron2 import model_zoo
from detectron2.utils.logger import setup_logger
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
# Model setup ---------------------------------------------------------------
sys.path.insert(0, os.path.abspath("./detectron2"))
setup_logger()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_classes = 15
criterion = nn.CrossEntropyLoss()
# Main model
model = models.resnet18(pretrained = True)
for param in model.parameters():
param.require_grad = False
n_features = model.fc.in_features
model.fc = nn.Linear(n_features, n_classes)
model = model.to(device)
# Viewpoint model
model_viewpoint = models.resnet18(pretrained = True)
for param in model_viewpoint.parameters():
param.require_grad = False
n_features = model_viewpoint.fc.in_features
model_viewpoint.fc = nn.Linear(n_features, 4)
model_viewpoint = model_viewpoint.to(device)
# Typicality model
model_typicality = models.resnet18(pretrained = True)
for param in model_typicality.parameters():
param.require_grad = False
n_features = model_typicality.fc.in_features
model_typicality.fc = nn.Linear(n_features, 5)
model_typicality = model_typicality.to(device)
model_Softmax = nn.Softmax(dim = 1)
cos = nn.CosineSimilarity()
# Transformations to the test set
test_transforms = transforms.Compose(
[transforms.Resize(size = (224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
)
# Helper functions ----------------------------------------------------------
def accuracy(y_pred, y):
top_pred = y_pred.argmax(1, keepdim = True)
correct = top_pred.eq(y.view_as(top_pred)).sum()
acc = correct.float() / y.shape[0]
return acc
activation = {}
def getActivation(name):
def hook(model_typicality, input, output):
activation[name] = output.detach()
return hook
def save_image_locally(image_array_FN, path_FN = "fake.jpg"):
image_array_FN = image_array_FN.astype(np.uint8)
data = Image.fromarray(image_array_FN)
data.save(path_FN)
return None
# Prediction ----------------------------------------------------------------
typicality_dict = {"Convertible": 0, "Hatchback": 1, "MPV": 2, "SUV": 3, "Saloon": 4}
classes_dict = {"Convertible_2000": 0, "Convertible_2003": 1, "Convertible_2006": 2, "Convertible_2007": 3, "Convertible_2008": 4, "Convertible_2009": 5, "Convertible_2010": 6, "Convertible_2011": 7, "Convertible_2012": 8, "Convertible_2013": 9, "Convertible_2014": 10, "Convertible_2015": 11, "Convertible_2016": 12, "Convertible_2017": 13, "Hatchback_2000": 14, "Hatchback_2003": 15, "Hatchback_2006": 16, "Hatchback_2007": 17, "Hatchback_2008": 18, "Hatchback_2009": 19, "Hatchback_2010": 20, "Hatchback_2011": 21, "Hatchback_2012": 22, "Hatchback_2013": 23, "Hatchback_2014": 24, "Hatchback_2015": 25, "Hatchback_2016": 26, "Hatchback_2017": 27, "MPV_2000": 28, "MPV_2003": 29, "MPV_2006": 30, "MPV_2007": 31, "MPV_2008": 32, "MPV_2009": 33, "MPV_2010": 34, "MPV_2011": 35, "MPV_2012": 36, "MPV_2013": 37, "MPV_2014": 38, "MPV_2015": 39, "MPV_2016": 40, "MPV_2017": 41, "MPV_2018": 42, "SUV_2000": 43, "SUV_2003": 44, "SUV_2006": 45, "SUV_2007": 46, "SUV_2008": 47, "SUV_2009": 48, "SUV_2010": 49, "SUV_2011": 50, "SUV_2012": 51, "SUV_2013": 52, "SUV_2014": 53, "SUV_2015": 54, "SUV_2016": 55, "SUV_2017": 56, "SUV_2018": 57, "Saloon_2000": 58, "Saloon_2003": 59, "Saloon_2006": 60, "Saloon_2007": 61, "Saloon_2008": 62, "Saloon_2009": 63, "Saloon_2010": 64, "Saloon_2011": 65, "Saloon_2012": 66, "Saloon_2013": 67, "Saloon_2014": 68, "Saloon_2015": 69, "Saloon_2016": 70, "Saloon_2017": 71, "Saloon_2018": 72}
years_dict = {"2000": 0, "2003": 1, "2006": 2, "2007": 3, "2008": 4, "2009": 5, "2010": 6, "2011": 7, "2012": 8, "2013": 9, "2014": 10, "2015": 11, "2016": 12, "2017": 13, "2018": 14}
dist = distutils.core.run_setup("./detectron2/setup.py")
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.model.roi_heads.score_thresh_test = 0.5
cfg.model.weights = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.model.device = "cpu"
predictor = DefaultPredictor(cfg)
def predict(img_F):
target_class = 2
img = Image.fromarray(img_F.astype("uint8"), "RGB")
img = np.array(img)
outputs = predictor(img)
masks = outputs["instances"].pred_masks
pred_classes = outputs["instances"].pred_classes.tolist()
pred_boxes = list(outputs["instances"].pred_boxes)
areas = torch.sum(torch.flatten(masks, start_dim = 1), dim = 1).tolist()
total_area = []
car_area = []
for idx in range(len(pred_classes)):
if pred_classes[idx] == target_class:
total_area.append(areas[idx])
car_area.append(idx)
if len(car_area) == 0:
img = Image.open("init.jpg")
img = np.array(img)
text_output = "Sorry! I am not able to recognize a car in this image. Please upload a new photo!"
return text_output, img
local_idx = total_area.index(max(total_area))
global_idx = car_area[local_idx]
unsq = outputs["instances"].pred_masks[index_global].unsqueeze(-1).to("cpu")
mult = torch.tensor(img) * unsq
unsq = unsq.int()
unsq[unsq == 0] = 255
unsq[unsq == 1] = 0
mult = mult + unsq
res = mult.numpy()
save_image_locally(res, path_FN = "fake.jpg")
img_pred = Image.open("fake.jpg")
img_pred = test_transforms(img_pred)
model_viewpoint.load_state_dict(torch.load("model_viewpoint.pt", map_location = torch.device("cpu")))
model_viewpoint.eval()
y_pred = model_viewpoint(img_pred.unsqueeze(0))
y_pred = model_Softmax(y_pred)
top_pred = y_pred.argmax(1, keepdim = True)
if top_pred.item() not in [0, 6] :
img = Image.open("fake.jpg")
img = np.array(img)
text_output = "Sorry! I am not able to recognize a frontal view of a car in this image. Please upload a new photo!"
return text_output, img
model.load_state_dict(torch.load("model_modernity.pt", map_location = torch.device("cpu")))
model.eval()
score_t = model(img_pred.unsqueeze(0))
score_t = model_Softmax(score_t)
model_year = score_curr.argmax(1, keepdim = True).item()
score_t = torch.mul(torch.range(0, 14).to(device), torch.reshape(score_t, (-1, ))).sum().item()
model_typicality.load_state_dict(torch.load("model_typicality.pt", map_location = torch.device("cpu")))
model_typicality.eval()
model_part = model_typicality(img_pred.unsqueeze(0))
model_part = model_Softmax(model_part)
model_part = model_part.argmax(1, keepdim = True).item()
model_avg = pd.DataFrame()
h1 = model_typicality.avgpool.register_forward_hook(getActivation("avgpool"))
out = model_typicality(img_pred.unsqueeze(0))
act_pool_t = activation["avgpool"]
h1.remove()
model_year = list(years_dict.keys())[list(years_dict.values()).index(model_year)]
model_part = list(typicality_dict.keys())[list(typicality_dict.values()).index(model_part)]
true_idx = classes_dict[model_part + "_" + model_year]
morph_avg = torch.load("morph.pt")
cos_t = cos(morph_avg[true_idx], act_pool_t).item()
txt = "Modernity score:", str(round(score_t, 2)), "| Typicality score:", str(round(cos_t, 2))
return txt, res
# Launching the app ---------------------------------------------------------
interface = gr.Interface(
predict,
inputs = "image",
outputs = ["text", gr.Image(type = "pil")],
title = "Let's classify your car!")
interface.launch()
|