File size: 11,817 Bytes
d4607d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import math
from dataclasses import dataclass

import jax
import jax.numpy as jnp
from jax import Array as Tensor
from flax import nnx
from einops import rearrange

from flux.wrapper import TorchWrapper
from flux.math import attention, rope


class EmbedND(nnx.Module):
    def __init__(self, dim: int, theta: int, axes_dim: list[int], dtype=jnp.float32, rngs: nnx.Rngs = None):
        self.dim = dim
        self.theta = theta
        self.axes_dim = axes_dim

    def __call__(self, ids: Tensor) -> Tensor:
        n_axes = ids.shape[-1]
        # emb = torch.cat(
        #     [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
        #     dim=-3,
        # )
        emb = jnp.concatenate(
            [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
            axis=-3,
        )

        # return emb.unsqueeze(1)
        return jnp.expand_dims(emb, 1)


def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
    """
    Create sinusoidal timestep embeddings.
    :param t: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an (N, D) Tensor of positional embeddings.
    """
    t = time_factor * t
    half = dim // 2
    # freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
        # t.device
    # )

    freqs = jnp.exp(-math.log(max_period) * jnp.arange(half, dtype=jnp.float32) / half)

    # args = t[:, None].float() * freqs[None]
    # embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    args = t[:, None] * freqs[None]
    embedding = jnp.concatenate([jnp.cos(args), jnp.sin(args)], axis=-1)
    if dim % 2:
        # embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        embedding = jnp.concatenate([embedding, jnp.zeros_like(embedding[:, :1])], axis=-1)
    # if torch.is_floating_point(t):
        # embedding = embedding.to(t)
    # return embedding
    if jnp.issubdtype(t.dtype, jnp.floating):
        embedding = embedding.astype(t.dtype)
    return embedding


class MLPEmbedder(nnx.Module):
    def __init__(self, in_dim: int, hidden_dim: int, dtype=jnp.float32, rngs: nnx.Rngs = None):
        nn = TorchWrapper(rngs=rngs, dtype=dtype)
        
        self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
        self.silu = nn.SiLU()
        self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)

    def __call__(self, x: Tensor) -> Tensor:
        return self.out_layer(self.silu(self.in_layer(x)))


class RMSNorm(nnx.Module):
    def __init__(self, dim: int, dtype=jnp.float32, rngs: nnx.Rngs = None):
        nn = TorchWrapper(rngs=rngs, dtype=dtype)
        # self.scale = nn.Parameter(torch.ones(dim))
        self.scale = nn.Parameter(jnp.ones((dim,)))


    def __call__(self, x: Tensor):
        x_dtype = x.dtype
        # x = x.float()
        x = x.astype(jnp.float32)
        # rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
        rrms = jax.lax.rsqrt(jnp.mean(x**2, axis=-1, keepdims=True) + 1e-6)
        # return (x * rrms).to(dtype=x_dtype) * self.scale
        return (x * rrms).astype(x.dtype) * self.scale


RMSNorm_class = RMSNorm

class QKNorm(nnx.Module):
    def __init__(self, dim: int, dtype=jnp.float32, rngs: nnx.Rngs = None):
        nn = TorchWrapper(rngs=rngs, dtype=dtype)
        RMSNorm = nn.declare_with_rng(RMSNorm_class)
        self.query_norm = RMSNorm(dim)
        self.key_norm = RMSNorm(dim)

    def __call__(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
        q = self.query_norm(q)
        k = self.key_norm(k)
        # return q.to(v), k.to(v)
        return q.astype(v.dtype), k.astype(v.dtype)


QKNorm_class = QKNorm

class SelfAttention(nnx.Module):
    def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=jnp.float32, rngs: nnx.Rngs = None):
        nn = TorchWrapper(rngs=rngs, dtype=dtype)
        QKNorm = nn.declare_with_rng(QKNorm_class)
        self.num_heads = num_heads
        head_dim = dim // num_heads

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.norm = QKNorm(head_dim)
        self.proj = nn.Linear(dim, dim)

    def __call__(self, x: Tensor, pe: Tensor) -> Tensor:
        qkv = self.qkv(x)
        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        q, k = self.norm(q, k, v)
        x = attention(q, k, v, pe=pe)
        x = self.proj(x)
        return x


@dataclass
class ModulationOut:
    shift: Tensor
    scale: Tensor
    gate: Tensor


class Modulation(nnx.Module):
    def __init__(self, dim: int, double: bool, dtype=jnp.float32, rngs: nnx.Rngs = None):
        nn = TorchWrapper(rngs=rngs, dtype=dtype)
        self.is_double = double
        self.multiplier = 6 if double else 3
        self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)

    def __call__(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
        # out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
        out = self.lin(nnx.silu(vec))[:, None, :]
        out = jnp.split(out, self.multiplier, axis=-1)
        return (
            ModulationOut(*out[:3]),
            ModulationOut(*out[3:]) if self.is_double else None,
        )

Modulation_class, SelfAttention_class = Modulation, SelfAttention

class DoubleStreamBlock(nnx.Module):
    def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=jnp.float32, rngs: nnx.Rngs = None):
        nn = TorchWrapper(rngs=rngs, dtype=dtype)
        Modulation, SelfAttention = nn.declare_with_rng(Modulation_class, SelfAttention_class)
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.img_mod = Modulation(hidden_size, double=True)
        self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)

        self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )

        self.txt_mod = Modulation(hidden_size, double=True)
        self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)

        self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )

    def __call__(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
        img_mod1, img_mod2 = self.img_mod(vec)
        txt_mod1, txt_mod2 = self.txt_mod(vec)

        # prepare image for attention
        img_modulated = self.img_norm1(img)
        img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
        img_qkv = self.img_attn.qkv(img_modulated)
        img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)

        # prepare txt for attention
        txt_modulated = self.txt_norm1(txt)
        txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
        txt_qkv = self.txt_attn.qkv(txt_modulated)
        txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)

        # run actual attention
        # q = torch.cat((txt_q, img_q), dim=2)
        # k = torch.cat((txt_k, img_k), dim=2)
        # v = torch.cat((txt_v, img_v), dim=2)
        q = jnp.concatenate((txt_q, img_q), axis=2)
        k = jnp.concatenate((txt_k, img_k), axis=2)
        v = jnp.concatenate((txt_v, img_v), axis=2)


        attn = attention(q, k, v, pe=pe)
        txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]

        # calculate the img bloks
        img = img + img_mod1.gate * self.img_attn.proj(img_attn)
        img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)

        # calculate the txt bloks
        txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
        txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
        return img, txt


class SingleStreamBlock(nnx.Module):
    """
    A DiT block with parallel linear layers as described in
    https://arxiv.org/abs/2302.05442 and adapted modulation interface.
    """

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qk_scale: float | None = None,
        dtype=jnp.float32, rngs: nnx.Rngs = None
    ):
        nn = TorchWrapper(rngs=rngs, dtype=dtype)
        QKNorm, Modulation = nn.declare_with_rng(QKNorm_class, Modulation_class)
        self.hidden_dim = hidden_size
        self.num_heads = num_heads
        head_dim = hidden_size // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
        # qkv and mlp_in
        self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
        # proj and mlp_out
        self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)

        self.norm = QKNorm(head_dim)

        self.hidden_size = hidden_size
        self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)

        self.mlp_act = nn.GELU(approximate="tanh")
        self.modulation = Modulation(hidden_size, double=False)

    def __call__(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
        mod, _ = self.modulation(vec)
        x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
        # qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
        qkv, mlp = jnp.split(self.linear1(x_mod), [3 * self.hidden_size,], axis=-1)

        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        q, k = self.norm(q, k, v)

        # compute attention
        attn = attention(q, k, v, pe=pe)
        # compute activation in mlp stream, cat again and run second linear layer
        # output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
        output = self.linear2(jnp.concatenate((attn, self.mlp_act(mlp)), axis=2))
        return x + mod.gate * output


class LastLayer(nnx.Module):
    def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=jnp.float32, rngs: nnx.Rngs = None):
        nn = TorchWrapper(rngs=rngs, dtype=dtype)
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))

    def __call__(self, x: Tensor, vec: Tensor) -> Tensor:
        # shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
        shift, scale = jnp.split(self.adaLN_modulation(vec), 2, axis=1)
        x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
        x = self.linear(x)
        return x