File size: 36,964 Bytes
9337c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199df2d
9337c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7999f9
 
9337c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199df2d
6e20a36
9337c3d
6e20a36
9337c3d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022


import os
import gradio as gr
from pinecone import Pinecone
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Optional
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.summarize import load_summarize_chain
from langchain.prompts import PromptTemplate, ChatPromptTemplate
from langchain.docstore.document import Document
import time
import asyncio
import plotly.graph_objects as go
from neo4j import GraphDatabase
import networkx as nx
from langchain_community.vectorstores import Neo4jVector
from langchain.chains.summarize import load_summarize_chain
from langchain.chains import LLMChain
from langchain_google_genai import GoogleGenerativeAI, GoogleGenerativeAIEmbeddings





class EnhancedLegalSearchSystem:
    def __init__(
        self,
        google_api_key: str,
        neo4j_url: str,
        neo4j_username: str,
        neo4j_password: str,
        embedding_model_name: str = "intfloat/e5-small-v2",
        device: str = "cpu"
    ):
        """Initialize the Enhanced Legal Search System"""
        # Initialize LLM
        self.llm = GoogleGenerativeAI(
            model="gemini-pro",
            google_api_key=google_api_key,
            temperature=0.1
        )
        
        # Initialize embeddings
        self.embeddings = GoogleGenerativeAIEmbeddings(
            model="models/embedding-001",
            google_api_key=google_api_key,
            task_type="retrieval_query"
        )
        
        # Initialize Neo4j connection
        self.neo4j_driver = GraphDatabase.driver(
            neo4j_url,
            auth=(neo4j_username, neo4j_password)
        )
        
        # Initialize vector store
        self.vector_store = Neo4jVector.from_existing_graph(
            embedding=self.embeddings,
            url=neo4j_url,
            username=neo4j_username,
            password=neo4j_password,
            node_label="Document",
            text_node_properties=["text"],
            embedding_node_property="embedding"
        )
        
        # Initialize additional embedding model for enhanced search
        self.local_embedding_model = SentenceTransformer(
            model_name_or_path=embedding_model_name,
            device=device
        )
        
        # Initialize prompts
        self.init_prompts()

    def __del__(self):
        """Cleanup Neo4j connection"""
        if hasattr(self, 'neo4j_driver'):
            self.neo4j_driver.close()

    def init_prompts(self):
        """Initialize enhanced prompts for legal analysis"""
        self.qa_prompt = ChatPromptTemplate.from_messages([
            ("system", """You are a legal expert assistant specializing in Indian law. 
                         Analyze the following legal context and provide a detailed, structured answer to the question.
                         Include specific sections, rules, and precedents where applicable.
                         Format your response with clear headings and bullet points for better readability.
                         
                         Context: {context}"""),
            ("human", "Question: {question}")
        ])

        self.map_prompt = PromptTemplate(
            template="""
            Analyze the following legal text segment:
            
            TEXT: "{text}"
            
            Instructions:
            1. Extract and summarize the key legal points
            2. Maintain all legal terminology exactly as written
            3. Preserve section numbers and references
            4. Keep all specific conditions and requirements
            5. Include any mentioned time periods or deadlines
            
            KEY POINTS:
            """,
            input_variables=["text"]  # Removed page_number as it's not used in the template
        )

        self.combine_prompt = PromptTemplate(
            template="""
            Question: {question}

            Using ONLY the information from the following legal document excerpts, provide a comprehensive answer:

            {text}

            Instructions:
            1. Base your response EXCLUSIVELY on the provided document excerpts
            2. If the documents don't contain enough information to fully answer the question, explicitly state what's missing
            3. Use direct quotes when appropriate
            4. Organize the response by relevant sections found in the documents
            5. If there are conflicting statements across documents, highlight them

            ANALYSIS:
            """,
            input_variables=["text", "question"]
        )

        # Initialize summarize chain
        self.chain = load_summarize_chain(
            llm=self.llm,
            chain_type="map_reduce",
            map_prompt=self.map_prompt,
            combine_prompt=self.combine_prompt,
            verbose=True
        )

   
    def get_related_legal_entities(self, query: str) -> List[Dict]:
        """Retrieve related legal entities and their relationships"""
        # Corrected Cypher query to handle aggregation properly
        cypher_query = """
                    // First, let's check if nodes exist and get their labels
MATCH (d:Document)
WHERE toLower(d.text) CONTAINS toLower($query)
WITH d
// Match all relationships from the document, collecting their types
OPTIONAL MATCH (d)-[r]-(connected)
WHERE NOT connected:Document  // Avoid direct document-to-document relations
WITH d, 
     collect(DISTINCT type(r)) as relationTypes,
     collect(DISTINCT labels(connected)) as connectedLabels

// Now use these to build our main query
MATCH (d:Document)-[r1]-(e)
WHERE toLower(d.text) CONTAINS toLower($query)
  AND NOT e:Document  // Exclude direct document connections
WITH d, r1, e
// Get secondary connections, but be more specific about what we're looking for
OPTIONAL MATCH (e)-[r2]-(related)
WHERE (related:Entity OR related:Concept OR related:Section OR related:Case)
  AND related <> d  // Prevent cycles back to original document
WITH d, {
    source_id: id(d),
    source_text: d.text,
    document_type: COALESCE(d.type, "Unknown"),
    relationship_type: type(r1),
    entity: {
        id: id(e),
        type: CASE WHEN e:Entity THEN "Entity"
                  WHEN e:Concept THEN "Concept"
                  WHEN e:Section THEN "Section"
                  WHEN e:Case THEN "Case"
                  ELSE "Other" END,
        text: COALESCE(e.text, e.name, e.title, "Unnamed"),
        properties: properties(e)
    },
    related_entities: collect(DISTINCT {
        id: id(related),
        type: CASE WHEN related:Entity THEN "Entity"
                  WHEN related:Concept THEN "Concept"
                  WHEN related:Section THEN "Section"
                  WHEN related:Case THEN "Case"
                  ELSE "Other" END,
        relationship: type(r2),
        text: COALESCE(related.text, related.name, related.title, "Unnamed"),
        properties: properties(related)
    })
} as result
WHERE result.entity.text IS NOT NULL  // Filter out any results with null entity text
RETURN DISTINCT result
ORDER BY result.source_id, result.entity.id
LIMIT 25

        """
        try:
            with self.neo4j_driver.session() as session:
                # Execute the improved query
                result = session.run(cypher_query, {"query": query})
                entities = [record["result"] for record in result]
                
                # Log the results for debugging
                print(f"Found {len(entities)} related entities")
                if entities:
                    for entity in entities:
                        print(f"Entity: {entity['entity']['text']}")
                        print(f"Source: {entity['source_text'][:100]}...")
                        print(f"Related: {len(entity['related_entities'])} connections")
                        
                return entities
                    
        except Exception as e:
            print(f"Error in get_related_legal_entities: {str(e)}")
            return []
        
    async def process_legal_query(
        self,
        question: str,
        top_k: int = 5,
        context_window: int = 1
    ) -> Dict[str, any]:
        """Process a legal query using both graph and vector search capabilities"""
        try:
            # 1. Perform semantic search
            semantic_results = self.vector_store.similarity_search(
                question,
                k=top_k,
                search_type="hybrid"
            )
            
            # 2. Get related legal entities with the full question context
            related_entities = self.get_related_legal_entities(question)
            
            # Log the counts for debugging
            print(f"Found {len(semantic_results)} semantic results")
            print(f"Found {len(related_entities)} related entities")
            
            # 3. Expand context with related documents
            expanded_results = self.expand_context(
                semantic_results,
                context_window
            )
            
            # 4. Generate comprehensive answer
            documents = self._process_results(expanded_results, semantic_results)
            
            # 5. Prepare context for LLM
            context = self._prepare_context(documents, related_entities)
            
            # 6. Generate answer using LLM
            chain = LLMChain(llm=self.llm, prompt=self.qa_prompt)
            response = await chain.ainvoke({
                "context": context,
                "question": question
            })
            answer = response.get('text', '')
            
            # 7. Return structured response with explicit related concepts
            return {
                "status": "Success",
                "answer": answer,
                "documents": self._format_documents(documents),
                "related_concepts": related_entities,  # This should now contain data
                "source_ids": sorted(list(set(doc.metadata.get('document_id', 'unknown') for doc in documents))),
                "context_info": {
                    "direct_matches": len([d for d in documents if d.metadata.get('context_type') == "DIRECT MATCH"]),
                    "context_chunks": len([d for d in documents if d.metadata.get('context_type') == "CONTEXT"])
                }
            }
            
        except Exception as e:
            print(f"Error in process_legal_query: {str(e)}")  # Add error logging
            return {
                "status": f"Error: {str(e)}",
                "answer": "An error occurred while processing your query.",
                "documents": "",
                "related_concepts": [],
                "source_ids": [],
                "context_info": {}
            }


    def expand_context(
        self,
        initial_results: List[Document],
        context_window: int
    ) -> List[Document]:
        """Expand context around search results"""
        expanded_results = []
        seen_ids = set()
        
        for doc in initial_results:
            doc_id = doc.metadata.get('document_id', doc.page_content[:50])
            if doc_id not in seen_ids:
                # Query for related documents
                context_results = self.vector_store.similarity_search(
                    doc.page_content,
                    k=2 * context_window + 1,
                    search_type="hybrid"
                )
                
                for result in context_results:
                    result_id = result.metadata.get('document_id', result.page_content[:50])
                    if result_id not in seen_ids:
                        expanded_results.append(result)
                        seen_ids.add(result_id)
        
        return expanded_results

    def _process_results(self, expanded_results: List[Document], initial_results: List[Document]) -> List[Document]:
        """Process and deduplicate search results"""
        seen_ids = set()
        documents = []
        
        for doc in expanded_results:
            doc_id = doc.metadata.get('document_id', doc.page_content[:50])
            if doc_id not in seen_ids:
                seen_ids.add(doc_id)
                is_direct_match = any(
                    r.metadata.get('document_id', r.page_content[:50]) == doc_id
                    for r in initial_results
                )
                
                doc.metadata['context_type'] = (
                    "DIRECT MATCH" if is_direct_match else "CONTEXT"
                )
                documents.append(doc)
        
        return sorted(
            documents,
            key=lambda x: x.metadata.get('document_id', 'unknown')
        )

    def _prepare_context(
        self,
        documents: List[Document],
        related_entities: List[Dict]
    ) -> str:
        """Prepare context for LLM processing"""
        context = "\n\nLegal Documents:\n" + "\n".join([
            f"[Document ID: {doc.metadata.get('document_id', 'unknown')}] {doc.page_content}"
            for doc in documents
        ])
        
        if related_entities:
            context += "\n\nRelated Legal Concepts and Relationships:\n"
            for entity in related_entities:
                context += f"\n• {entity.get('entity', '')}"
                if entity.get('related_entities'):
                    for related in entity['related_entities']:
                        if related.get('entity'):
                            context += f"\n  - {related['type']}: {related['entity']}"
        
        return context

    def _format_documents(self, documents: List[Document]) -> str:
        """Format documents as markdown"""
        markdown = "### Retrieved Documents\n\n"
        for i, doc in enumerate(documents, 1):
            markdown += (
                f"**Document {i}** "
                f"(ID: {doc.metadata.get('document_id', 'unknown')}, "
                f"{doc.metadata.get('context_type', 'UNKNOWN')})\n"
                f"```\n{doc.page_content}\n```\n\n"
            )
        return markdown

    

    def generate_document_graph(
        self,
        query: str,
        top_k: int = 5,
        similarity_threshold: float = 0.5
    ) -> List[Dict]:
        """Generate graph data based on document similarity and relationships"""
        try:
            # 1. Get initial semantic search results
            semantic_results = self.vector_store.similarity_search(
                query,
                k=top_k,
                search_type="hybrid"
            )
            
            # 2. Get embeddings for all documents
            doc_texts = [doc.page_content for doc in semantic_results]
            doc_embeddings = self.local_embedding_model.encode(doc_texts)
            
            # 3. Create graph data structure
            graph_data = []
            seen_docs = set()
            
            # First, add all documents as nodes
            for i, doc in enumerate(semantic_results):
                doc_id = doc.metadata.get('document_id', f'doc_{i}')
                if doc_id not in seen_docs:
                    seen_docs.add(doc_id)
                    doc_type = doc.metadata.get('type', 'document')
                    
                    # Create node entry
                    graph_data.append({
                        'source_id': doc_id,
                        'source_text': doc.page_content[:200],  # Truncate for display
                        'document_type': doc_type,
                        'entity': {
                            'id': doc_id,
                            'type': 'Document',
                            'text': f"Document {i + 1}",
                            'properties': {
                                'similarity': 1.0,
                                'length': len(doc.page_content)
                            }
                        },
                        'related_entities': []
                    })
            
            # Add relationships based on similarity
            from sklearn.metrics.pairwise import cosine_similarity
            similarity_matrix = cosine_similarity(doc_embeddings)
            
            # Create relationships between similar documents
            for i in range(len(semantic_results)):
                related = []
                for j in range(len(semantic_results)):
                    if i != j and similarity_matrix[i][j] > similarity_threshold:
                        doc_j = semantic_results[j]
                        doc_j_id = doc_j.metadata.get('document_id', f'doc_{j}')
                        
                        related.append({
                            'id': doc_j_id,
                            'type': 'Document',
                            'relationship': 'similar_to',
                            'text': f"Document {j + 1}",
                            'properties': {
                                'similarity_score': float(similarity_matrix[i][j])
                            }
                        })
                
                # Add related documents to the graph data
                if related:
                    graph_data[i]['related_entities'] = related
            
            return graph_data
            
        except Exception as e:
            print(f"Error generating document graph: {str(e)}")
            return []



def create_graph_visualization(graph_data: List[Dict]) -> go.Figure:
    """Create an interactive graph visualization using Plotly"""
    if not graph_data:
        return go.Figure(layout=go.Layout(title='No documents found'))
    
    # Initialize graph
    G = nx.Graph()
    
    # Color mapping
    color_map = {
        'Document': '#3B82F6',  # blue
        'Section': '#10B981',   # green
        'Reference': '#F59E0B'  # yellow
    }
    
    # Node information storage
    node_colors = []
    node_texts = []
    node_hovers = []  # Full text for hover
    nodes_added = set()
    
    # Process nodes and edges
    for data in graph_data:
        source_id = data['source_id']
        source_text = data['source_text']
        
        # Add main document node
        if source_id not in nodes_added:
            G.add_node(source_id)
            node_colors.append(color_map['Document'])
            # Short text for display
            node_texts.append(f"Doc {len(nodes_added)+1}")
            # Full text for hover/click
            node_hovers.append(f"Document {len(nodes_added)+1}:<br><br>{source_text}")
            nodes_added.add(source_id)
        
        # Process related documents
        for related in data.get('related_entities', []):
            related_id = related['id']
            similarity = related['properties'].get('similarity_score', 0.0)
            
            if related_id not in nodes_added:
                G.add_node(related_id)
                node_colors.append(color_map['Document'])
                node_texts.append(f"Doc {len(nodes_added)+1}")
                node_hovers.append(f"Document {len(nodes_added)+1}:<br><br>{related['text']}")
                nodes_added.add(related_id)
            
            # Add edge with similarity weight
            G.add_edge(
                source_id,
                related_id,
                weight=similarity,
                relationship=f"Similarity: {similarity:.2f}"
            )
    
    # Create layout
    pos = nx.spring_layout(G, k=2.0, iterations=50)
    
    # Create edge trace
    edge_x = []
    edge_y = []
    edge_text = []
    
    for edge in G.edges(data=True):
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        
        # Create curved line
        mid_x = (x0 + x1) / 2
        mid_y = (y0 + y1) / 2
        # Add some curvature
        mid_x += (y1 - y0) * 0.1
        mid_y -= (x1 - x0) * 0.1
        
        # Add points for curved line
        edge_x.extend([x0, mid_x, x1, None])
        edge_y.extend([y0, mid_y, y1, None])
        edge_text.append(edge[2]['relationship'])
    
    edge_trace = go.Scatter(
        x=edge_x,
        y=edge_y,
        line=dict(width=1.5, color='#9CA3AF'),
        hoverinfo='text',
        text=edge_text,
        mode='lines'
    )
    
    # Create node trace
    node_x = []
    node_y = []
    
    for node in G.nodes():
        x, y = pos[node]
        node_x.append(x)
        node_y.append(y)
    
    node_trace = go.Scatter(
        x=node_x,
        y=node_y,
        mode='markers+text',
        hoverinfo='text',
        text=node_texts,
        hovertext=node_hovers,  # Full text shown on hover
        textposition="top center",
        marker=dict(
            size=30,
            color=node_colors,
            line=dict(width=2, color='white'),
            symbol='circle'
        ),
        customdata=node_hovers  # Store full text for click events
    )
    
    # Create figure with updated layout
    fig = go.Figure(
        data=[edge_trace, node_trace],
        layout=go.Layout(
            title={
                'text': 'Document Similarity Graph<br><sub>Click nodes to view full text</sub>',
                'y': 0.95,
                'x': 0.5,
                'xanchor': 'center',
                'yanchor': 'top'
            },
            showlegend=False,
            hovermode='closest',
            margin=dict(b=20, l=5, r=5, t=60),
            xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            plot_bgcolor='white',
            width=800,
            height=600,
            clickmode='event+select'  # Enable click events
        )
    )
    
    return fig

def create_interface(search_system: EnhancedLegalSearchSystem):
    """Create Gradio interface with interactive graph"""
    
    with gr.Blocks(css="footer {display: none !important;}") as demo:
        gr.Markdown("""
        # Enhanced Legal Search System
        Enter your legal query below to search through documents and get an AI-powered analysis.
        This system combines graph-based and semantic search capabilities for comprehensive legal research.
        """)
        
        with gr.Row():
            query_input = gr.Textbox(
                label="Legal Query",
                placeholder="e.g., What are the reporting obligations for banks under the Money Laundering Act?",
                lines=3
            )
            
        with gr.Row():
            search_button = gr.Button("Search & Analyze")
            
        status_output = gr.Textbox(
            label="Status",
            interactive=False
        )
        
        with gr.Tabs():
            with gr.TabItem("AI Legal Analysis"):
                analysis_output = gr.Markdown(
                    label="AI-Generated Legal Analysis",
                    value="Analysis will appear here..."
                )
            
            with gr.TabItem("Retrieved Documents"):
                docs_output = gr.Markdown(
                    label="Source Documents",
                    value="Search results will appear here..."
                )
                
            with gr.TabItem("Related Concepts"):
                concepts_output = gr.Json(
                    label="Related Legal Concepts",
                    value={}
                )
            
            with gr.TabItem("Knowledge Graph"):
                # Graph visualization
                graph_output = gr.Plot(
                    label="Legal Knowledge Graph"
                )
                # Add text area for showing clicked document content
                selected_doc_content = gr.Textbox(
                    label="Selected Document Content",
                    interactive=False,
                    lines=10
                )
        
        async def process_query(query):
            if not query.strip():
                return (
                    "Please enter a query",
                    "No analysis available",
                    "No documents available",
                    {},
                    None,
                    ""
                )
            
            results = await search_system.process_legal_query(query)
            graph_data = search_system.generate_document_graph(query)
            graph_fig = create_graph_visualization(graph_data)
            
            return (
                results['status'],
                results['answer'],
                results['documents'],
                {"related_concepts": results['related_concepts']},
                graph_fig,
                "Click on a node to view document content"
            )
        
        search_button.click(
            fn=process_query,
            inputs=[query_input],
            outputs=[
                status_output,
                analysis_output,
                docs_output,
                concepts_output,
                graph_output,
                selected_doc_content
            ]
        )
    
    return demo




class LegalSearchSystem:
    def __init__(
        self,
        pinecone_api_key: str = "pcsk_43sajZ_MjcXR2yN5cAcVi8RARyB6i3NP3wLTnTLugbUcN9cUU4q5EfNmuwLPkmxAvykk9o",
        google_api_key: str = "AIzaSyDWHGMd8a70RbL3EBenfUwimcAHjhvgM6M",
        environment: str = "us-east-1",
        index_name: str = "pdf-embeddings",
        dimension: int = 384,
        embedding_model_name: str = "intfloat/e5-small-v2",
        device: str = "cpu"
    ):
        # Initialize Pinecone
        self.pc = Pinecone(api_key=pinecone_api_key)
        
        # Initialize LangChain with Gemini
        self.llm = ChatGoogleGenerativeAI(
            model="gemini-pro",
            temperature=0,
            google_api_key=google_api_key
        )

        # Initialize prompts
        self.map_prompt = PromptTemplate(
            template="""
            Analyze the following legal text segment and extract key information:
            
            TEXT: "{text}"
            
            Instructions:
            1. Maintain all legal terminology exactly as written
            2. Preserve section numbers and references
            3. Keep all specific conditions and requirements
            4. Include any mentioned time periods or deadlines
            
            DETAILED ANALYSIS:
            """,
            input_variables=["text"]
        )
        
        self.combine_prompt = PromptTemplate(
            template="""
            Based on the following excerpts from legal documents and the question: "{question}"
            
            EXCERPTS:
            {text}
            
            Instructions:
            1. Synthesize a comprehensive answer that connects relevant sections
            2. Maintain precise legal language from the source material
            3. Reference specific sections and subsections where applicable
            4. If there are seemingly disconnected pieces of information, explain their relationship
            5. Highlight any conditions or exceptions that span multiple excerpts
            
            COMPREHENSIVE LEGAL ANALYSIS:
            """,
            input_variables=["text", "question"]
        )
        
        # Initialize chain
        self.chain = load_summarize_chain(
            llm=self.llm,
            chain_type="stuff",
            prompt=self.combine_prompt,
            verbose=True
        )

        # Initialize Pinecone index and embedding model
        self.index = self.pc.Index(index_name)
        self.embedding_model = SentenceTransformer(
            model_name_or_path=embedding_model_name,
            device=device
        )

    def search(self, query_text: str, top_k: int = 5, context_window: int = 1) -> Dict:
        """
        Perform a search and analysis of the legal query.
        """
        try:
            # Get search results with context
            results = self.query_and_summarize(
                query_text=query_text,
                top_k=top_k,
                context_window=context_window
            )
            
            # Format the results for display
            docs_markdown = self._format_documents(results['raw_results'])
            
            return {
                'status': "Search completed successfully",
                'documents': docs_markdown,
                'analysis': results['summary'],
                'source_pages': results['source_pages'],
                'context_info': results['context_info']
            }
        except Exception as e:
            return {
                'status': f"Error during search: {str(e)}",
                'documents': "Error retrieving documents",
                'analysis': "Error generating analysis",
                'source_pages': [],
                'context_info': {}
            }

    def query_and_summarize(
        self,
        query_text: str,
        top_k: int = 5,
        filter: Optional[Dict] = None,
        context_window: int = 1
    ) -> Dict:
        """
        Query Pinecone and generate a summary with enhanced context handling.
        """
        # Generate embedding for query
        query_embedding = self.embedding_model.encode(query_text).tolist()
        
        # Query Pinecone
        initial_results = self.index.query(
            vector=query_embedding,
            top_k=top_k,
            include_metadata=True,
            filter=filter
        )['matches']
        
        # Expand context
        expanded_results = []
        for match in initial_results:
            page_num = match['metadata']['page_number']
            context_filter = {
                "page_number": {
                    "$gte": max(1, page_num - context_window),
                    "$lte": page_num + context_window
                }
            }
            if filter:
                context_filter.update(filter)
            
            context_results = self.index.query(
                vector=self.embedding_model.encode(match['metadata']['text']).tolist(),
                top_k=2 * context_window + 1,
                include_metadata=True,
                filter=context_filter
            )['matches']
            
            expanded_results.extend(context_results)
        
        # Process results and generate summary
        documents = self._process_results(expanded_results, initial_results)
        summary = self.chain.run(
            input_documents=documents,
            question=query_text
        )
        
        return {
            'raw_results': expanded_results,
            'summary': summary,
            'source_pages': list(set(doc.metadata['page_number'] for doc in documents)),
            'context_info': {
                'direct_matches': len([d for d in documents if d.metadata['context_type'] == "DIRECT MATCH"]),
                'context_chunks': len([d for d in documents if d.metadata['context_type'] == "CONTEXT"])
            }
        }

    def _process_results(self, expanded_results: List[Dict], initial_results: List[Dict]) -> List[Document]:
        """
        Process and deduplicate search results.
        """
        seen_ids = set()
        documents = []
        
        for result in expanded_results:
            if result['id'] not in seen_ids:
                seen_ids.add(result['id'])
                is_direct_match = any(r['id'] == result['id'] for r in initial_results)
                
                documents.append(Document(
                    page_content=result['metadata']['text'],
                    metadata={
                        'score': result['score'],
                        'page_number': result['metadata']['page_number'],
                        'context_type': "DIRECT MATCH" if is_direct_match else "CONTEXT"
                    }
                ))
        
        return sorted(documents, key=lambda x: x.metadata['page_number'])

    def _format_documents(self, results: List[Dict]) -> str:
        """
        Format search results as markdown.
        """
        markdown = "### Retrieved Documents\n\n"
        for i, result in enumerate(results, 1):
            markdown += f"**Document {i}** (Page {result['metadata']['page_number']})\n"
            markdown += f"```\n{result['metadata']['text']}\n```\n\n"
        return markdown
    

async def process_query_async(query: str, search_system: LegalSearchSystem, graph_search_system: EnhancedLegalSearchSystem):
    """
    Asynchronous function to process both traditional and graph-based searches
    """
    if not query.strip():
        return "Please enter a query", "", "", "", {}
    
    # Regular search (synchronous)
    results = search_system.search(query)
    
    try:
        # Graph search (asynchronous)
        graph_results = await graph_search_system.process_legal_query(query)
        graph_documents = graph_results.get('documents', "Error processing graph search")
        graph_concepts = graph_results.get('related_concepts', {})
    except Exception as e:
        graph_documents = f"Error processing graph search: {str(e)}"
        graph_concepts = {}

    graph_data = graph_search_system.generate_document_graph(query)
    graph_fig = create_graph_visualization(graph_data)
    
    return (
        results['status'],
        results['documents'],
        results['analysis'],
        graph_documents,
        graph_concepts,
        graph_fig,
        "Click on a node to view document content"
    )

def create_interface(graph_search_system: EnhancedLegalSearchSystem):
    search_system = LegalSearchSystem()
    
    with gr.Blocks(css="footer {display: none !important;}") as demo:
        gr.Markdown("""
        # Corporate Law Legal Search Engine
        Enter your legal query below to search through documents and get an AI-powered analysis.Queires only related to corporate law will give relevant information
        """)
        
        with gr.Row():
            query_input = gr.Textbox(
                label="Legal Query",
                placeholder="e.g., What are the key principles of contract law?",
                lines=3
            )
            
        with gr.Row():
            search_button = gr.Button("Search & Analyze")
            
        status_output = gr.Textbox(
            label="Status",
            interactive=False
        )
        
        with gr.Tabs():
            with gr.TabItem("Search Results"):
                docs_output = gr.Markdown(
                    label="Retrieved Documents",
                    value="Search results will appear here..."
                )
            
            with gr.TabItem("AI Legal Analysis"):
                summary_output = gr.Markdown(
                    label="AI-Generated Legal Analysis",
                    value="Analysis will appear here..."
                )

            with gr.TabItem("Retrieved Documents through Graph Rag"):
                docs_output_graph = gr.Markdown(
                    label="Source Documents",
                    value="Search results will appear here..."
                )
                graph_analysis_output = gr.JSON(
                    label="Related Concepts",
                    value={}
                )

            with gr.TabItem("Knowledge Graph"):
                # Graph visualization
                graph_output = gr.Plot(
                    label="Legal Knowledge Graph"
                )
                # Add text area for showing clicked document content
                selected_doc_content = gr.Textbox(
                    label="Selected Document Content",
                    interactive=False,
                    lines=10
                )

        def process_query(query):
        # Create event loop if it doesn't exist
            try:
                loop = asyncio.get_event_loop()
            except RuntimeError:
                loop = asyncio.new_event_loop()
                asyncio.set_event_loop(loop)
            
            # Run the async function and get results
            return loop.run_until_complete(
                process_query_async(query, search_system, graph_search_system)
            )
    
        search_button.click(
            fn=process_query,
            inputs=[query_input],
            outputs=[
                status_output,
                docs_output,
                summary_output,
                docs_output_graph,
                graph_analysis_output,
                graph_output,
                selected_doc_content
            ]
        )
    
    
    
    return demo

if __name__ == "__main__":
    graph_search_system = EnhancedLegalSearchSystem(
        google_api_key="AIzaSyDWHGMd8a70RbL3EBenfUwimcAHjhvgM6M",
        neo4j_url="neo4j+s://a63462d0.databases.neo4j.io",
        neo4j_username="neo4j",
        neo4j_password="nU8Ut5N8k7LmQzNPe7vUbpZxMirK8rHrmLuzPc2G_Zc"    
    )
    demo = create_interface(graph_search_system)
    demo.launch()