Spaces:
Runtime error
Runtime error
File size: 71,883 Bytes
9337c3d 8f7d06e eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d eef679a 9337c3d 199df2d 9337c3d eef679a 9337c3d 5630d67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 |
# import os
# import gradio as gr
# from pinecone import Pinecone
# from sentence_transformers import SentenceTransformer
# from typing import List, Dict, Optional
# from langchain_google_genai import ChatGoogleGenerativeAI
# from langchain.chains.summarize import load_summarize_chain
# from langchain.prompts import PromptTemplate, ChatPromptTemplate
# from langchain.docstore.document import Document
# import time
# import asyncio
# import plotly.graph_objects as go
# from neo4j import GraphDatabase
# import networkx as nx
# from langchain_community.vectorstores import Neo4jVector
# from langchain.chains.summarize import load_summarize_chain
# from langchain.chains import LLMChain
# from langchain_google_genai import GoogleGenerativeAI, GoogleGenerativeAIEmbeddings
# class EnhancedLegalSearchSystem:
# def __init__(
# self,
# google_api_key: str,
# neo4j_url: str,
# neo4j_username: str,
# neo4j_password: str,
# embedding_model_name: str = "intfloat/e5-small-v2",
# device: str = "cpu"
# ):
# """Initialize the Enhanced Legal Search System"""
# # Initialize LLM
# self.llm = GoogleGenerativeAI(
# model="gemini-pro",
# google_api_key=google_api_key,
# temperature=0.1
# )
# # Initialize embeddings
# self.embeddings = GoogleGenerativeAIEmbeddings(
# model="models/embedding-001",
# google_api_key=google_api_key,
# task_type="retrieval_query"
# )
# # Initialize Neo4j connection
# self.neo4j_driver = GraphDatabase.driver(
# neo4j_url,
# auth=(neo4j_username, neo4j_password)
# )
# # Initialize vector store
# self.vector_store = Neo4jVector.from_existing_graph(
# embedding=self.embeddings,
# url=neo4j_url,
# username=neo4j_username,
# password=neo4j_password,
# node_label="Document",
# text_node_properties=["text"],
# embedding_node_property="embedding"
# )
# # Initialize additional embedding model for enhanced search
# self.local_embedding_model = SentenceTransformer(
# model_name_or_path=embedding_model_name,
# device=device
# )
# # Initialize prompts
# self.init_prompts()
# def __del__(self):
# """Cleanup Neo4j connection"""
# if hasattr(self, 'neo4j_driver'):
# self.neo4j_driver.close()
# def init_prompts(self):
# """Initialize enhanced prompts for legal analysis"""
# self.qa_prompt = ChatPromptTemplate.from_messages([
# ("system", """You are a legal expert assistant specializing in Indian law.
# Analyze the following legal context and provide a detailed, structured answer to the question.
# Include specific sections, rules, and precedents where applicable.
# Format your response with clear headings and bullet points for better readability.
# Context: {context}"""),
# ("human", "Question: {question}")
# ])
# self.map_prompt = PromptTemplate(
# template="""
# Analyze the following legal text segment:
# TEXT: "{text}"
# Instructions:
# 1. Extract and summarize the key legal points
# 2. Maintain all legal terminology exactly as written
# 3. Preserve section numbers and references
# 4. Keep all specific conditions and requirements
# 5. Include any mentioned time periods or deadlines
# KEY POINTS:
# """,
# input_variables=["text"] # Removed page_number as it's not used in the template
# )
# self.combine_prompt = PromptTemplate(
# template="""
# Question: {question}
# Using ONLY the information from the following legal document excerpts, provide a comprehensive answer:
# {text}
# Instructions:
# 1. Base your response EXCLUSIVELY on the provided document excerpts
# 2. If the documents don't contain enough information to fully answer the question, explicitly state what's missing
# 3. Use direct quotes when appropriate
# 4. Organize the response by relevant sections found in the documents
# 5. If there are conflicting statements across documents, highlight them
# ANALYSIS:
# """,
# input_variables=["text", "question"]
# )
# # Initialize summarize chain
# self.chain = load_summarize_chain(
# llm=self.llm,
# chain_type="map_reduce",
# map_prompt=self.map_prompt,
# combine_prompt=self.combine_prompt,
# verbose=True
# )
# def get_related_legal_entities(self, query: str) -> List[Dict]:
# """Retrieve related legal entities and their relationships"""
# # Corrected Cypher query to handle aggregation properly
# cypher_query = """
# // First, let's check if nodes exist and get their labels
# MATCH (d:Document)
# WHERE toLower(d.text) CONTAINS toLower($query)
# WITH d
# // Match all relationships from the document, collecting their types
# OPTIONAL MATCH (d)-[r]-(connected)
# WHERE NOT connected:Document // Avoid direct document-to-document relations
# WITH d,
# collect(DISTINCT type(r)) as relationTypes,
# collect(DISTINCT labels(connected)) as connectedLabels
# // Now use these to build our main query
# MATCH (d:Document)-[r1]-(e)
# WHERE toLower(d.text) CONTAINS toLower($query)
# AND NOT e:Document // Exclude direct document connections
# WITH d, r1, e
# // Get secondary connections, but be more specific about what we're looking for
# OPTIONAL MATCH (e)-[r2]-(related)
# WHERE (related:Entity OR related:Concept OR related:Section OR related:Case)
# AND related <> d // Prevent cycles back to original document
# WITH d, {
# source_id: id(d),
# source_text: d.text,
# document_type: COALESCE(d.type, "Unknown"),
# relationship_type: type(r1),
# entity: {
# id: id(e),
# type: CASE WHEN e:Entity THEN "Entity"
# WHEN e:Concept THEN "Concept"
# WHEN e:Section THEN "Section"
# WHEN e:Case THEN "Case"
# ELSE "Other" END,
# text: COALESCE(e.text, e.name, e.title, "Unnamed"),
# properties: properties(e)
# },
# related_entities: collect(DISTINCT {
# id: id(related),
# type: CASE WHEN related:Entity THEN "Entity"
# WHEN related:Concept THEN "Concept"
# WHEN related:Section THEN "Section"
# WHEN related:Case THEN "Case"
# ELSE "Other" END,
# relationship: type(r2),
# text: COALESCE(related.text, related.name, related.title, "Unnamed"),
# properties: properties(related)
# })
# } as result
# WHERE result.entity.text IS NOT NULL // Filter out any results with null entity text
# RETURN DISTINCT result
# ORDER BY result.source_id, result.entity.id
# LIMIT 25
# """
# try:
# with self.neo4j_driver.session() as session:
# # Execute the improved query
# result = session.run(cypher_query, {"query": query})
# entities = [record["result"] for record in result]
# # Log the results for debugging
# print(f"Found {len(entities)} related entities")
# if entities:
# for entity in entities:
# print(f"Entity: {entity['entity']['text']}")
# print(f"Source: {entity['source_text'][:100]}...")
# print(f"Related: {len(entity['related_entities'])} connections")
# return entities
# except Exception as e:
# print(f"Error in get_related_legal_entities: {str(e)}")
# return []
# async def process_legal_query(
# self,
# question: str,
# top_k: int = 5,
# context_window: int = 1
# ) -> Dict[str, any]:
# """Process a legal query using both graph and vector search capabilities"""
# try:
# # 1. Perform semantic search
# semantic_results = self.vector_store.similarity_search(
# question,
# k=top_k,
# search_type="hybrid"
# )
# # 2. Get related legal entities with the full question context
# related_entities = self.get_related_legal_entities(question)
# # Log the counts for debugging
# print(f"Found {len(semantic_results)} semantic results")
# print(f"Found {len(related_entities)} related entities")
# # 3. Expand context with related documents
# expanded_results = self.expand_context(
# semantic_results,
# context_window
# )
# # 4. Generate comprehensive answer
# documents = self._process_results(expanded_results, semantic_results)
# # 5. Prepare context for LLM
# context = self._prepare_context(documents, related_entities)
# # 6. Generate answer using LLM
# chain = LLMChain(llm=self.llm, prompt=self.qa_prompt)
# response = await chain.ainvoke({
# "context": context,
# "question": question
# })
# answer = response.get('text', '')
# # 7. Return structured response with explicit related concepts
# return {
# "status": "Success",
# "answer": answer,
# "documents": self._format_documents(documents),
# "related_concepts": related_entities, # This should now contain data
# "source_ids": sorted(list(set(doc.metadata.get('document_id', 'unknown') for doc in documents))),
# "context_info": {
# "direct_matches": len([d for d in documents if d.metadata.get('context_type') == "DIRECT MATCH"]),
# "context_chunks": len([d for d in documents if d.metadata.get('context_type') == "CONTEXT"])
# }
# }
# except Exception as e:
# print(f"Error in process_legal_query: {str(e)}") # Add error logging
# return {
# "status": f"Error: {str(e)}",
# "answer": "An error occurred while processing your query.",
# "documents": "",
# "related_concepts": [],
# "source_ids": [],
# "context_info": {}
# }
# def expand_context(
# self,
# initial_results: List[Document],
# context_window: int
# ) -> List[Document]:
# """Expand context around search results"""
# expanded_results = []
# seen_ids = set()
# for doc in initial_results:
# doc_id = doc.metadata.get('document_id', doc.page_content[:50])
# if doc_id not in seen_ids:
# # Query for related documents
# context_results = self.vector_store.similarity_search(
# doc.page_content,
# k=2 * context_window + 1,
# search_type="hybrid"
# )
# for result in context_results:
# result_id = result.metadata.get('document_id', result.page_content[:50])
# if result_id not in seen_ids:
# expanded_results.append(result)
# seen_ids.add(result_id)
# return expanded_results
# def _process_results(self, expanded_results: List[Document], initial_results: List[Document]) -> List[Document]:
# """Process and deduplicate search results"""
# seen_ids = set()
# documents = []
# for doc in expanded_results:
# doc_id = doc.metadata.get('document_id', doc.page_content[:50])
# if doc_id not in seen_ids:
# seen_ids.add(doc_id)
# is_direct_match = any(
# r.metadata.get('document_id', r.page_content[:50]) == doc_id
# for r in initial_results
# )
# doc.metadata['context_type'] = (
# "DIRECT MATCH" if is_direct_match else "CONTEXT"
# )
# documents.append(doc)
# return sorted(
# documents,
# key=lambda x: x.metadata.get('document_id', 'unknown')
# )
# def _prepare_context(
# self,
# documents: List[Document],
# related_entities: List[Dict]
# ) -> str:
# """Prepare context for LLM processing"""
# context = "\n\nLegal Documents:\n" + "\n".join([
# f"[Document ID: {doc.metadata.get('document_id', 'unknown')}] {doc.page_content}"
# for doc in documents
# ])
# if related_entities:
# context += "\n\nRelated Legal Concepts and Relationships:\n"
# for entity in related_entities:
# context += f"\n• {entity.get('entity', '')}"
# if entity.get('related_entities'):
# for related in entity['related_entities']:
# if related.get('entity'):
# context += f"\n - {related['type']}: {related['entity']}"
# return context
# def _format_documents(self, documents: List[Document]) -> str:
# """Format documents as markdown"""
# markdown = "### Retrieved Documents\n\n"
# for i, doc in enumerate(documents, 1):
# markdown += (
# f"**Document {i}** "
# f"(ID: {doc.metadata.get('document_id', 'unknown')}, "
# f"{doc.metadata.get('context_type', 'UNKNOWN')})\n"
# f"```\n{doc.page_content}\n```\n\n"
# )
# return markdown
# def generate_document_graph(
# self,
# query: str,
# top_k: int = 5,
# similarity_threshold: float = 0.5
# ) -> List[Dict]:
# """Generate graph data based on document similarity and relationships"""
# try:
# # 1. Get initial semantic search results
# semantic_results = self.vector_store.similarity_search(
# query,
# k=top_k,
# search_type="hybrid"
# )
# # 2. Get embeddings for all documents
# doc_texts = [doc.page_content for doc in semantic_results]
# doc_embeddings = self.local_embedding_model.encode(doc_texts)
# # 3. Create graph data structure
# graph_data = []
# seen_docs = set()
# # First, add all documents as nodes
# for i, doc in enumerate(semantic_results):
# doc_id = doc.metadata.get('document_id', f'doc_{i}')
# if doc_id not in seen_docs:
# seen_docs.add(doc_id)
# doc_type = doc.metadata.get('type', 'document')
# # Create node entry
# graph_data.append({
# 'source_id': doc_id,
# 'source_text': doc.page_content[:200], # Truncate for display
# 'document_type': doc_type,
# 'entity': {
# 'id': doc_id,
# 'type': 'Document',
# 'text': f"Document {i + 1}",
# 'properties': {
# 'similarity': 1.0,
# 'length': len(doc.page_content)
# }
# },
# 'related_entities': []
# })
# # Add relationships based on similarity
# from sklearn.metrics.pairwise import cosine_similarity
# similarity_matrix = cosine_similarity(doc_embeddings)
# # Create relationships between similar documents
# for i in range(len(semantic_results)):
# related = []
# for j in range(len(semantic_results)):
# if i != j and similarity_matrix[i][j] > similarity_threshold:
# doc_j = semantic_results[j]
# doc_j_id = doc_j.metadata.get('document_id', f'doc_{j}')
# related.append({
# 'id': doc_j_id,
# 'type': 'Document',
# 'relationship': 'similar_to',
# 'text': f"Document {j + 1}",
# 'properties': {
# 'similarity_score': float(similarity_matrix[i][j])
# }
# })
# # Add related documents to the graph data
# if related:
# graph_data[i]['related_entities'] = related
# return graph_data
# except Exception as e:
# print(f"Error generating document graph: {str(e)}")
# return []
# def create_graph_visualization(graph_data: List[Dict]) -> go.Figure:
# """Create an interactive graph visualization using Plotly"""
# if not graph_data:
# return go.Figure(layout=go.Layout(title='No documents found'))
# # Initialize graph
# G = nx.Graph()
# # Color mapping
# color_map = {
# 'Document': '#3B82F6', # blue
# 'Section': '#10B981', # green
# 'Reference': '#F59E0B' # yellow
# }
# # Node information storage
# node_colors = []
# node_texts = []
# node_hovers = [] # Full text for hover
# nodes_added = set()
# # Process nodes and edges
# for data in graph_data:
# source_id = data['source_id']
# source_text = data['source_text']
# # Add main document node
# if source_id not in nodes_added:
# G.add_node(source_id)
# node_colors.append(color_map['Document'])
# # Short text for display
# node_texts.append(f"Doc {len(nodes_added)+1}")
# # Full text for hover/click
# node_hovers.append(f"Document {len(nodes_added)+1}:<br><br>{source_text}")
# nodes_added.add(source_id)
# # Process related documents
# for related in data.get('related_entities', []):
# related_id = related['id']
# similarity = related['properties'].get('similarity_score', 0.0)
# if related_id not in nodes_added:
# G.add_node(related_id)
# node_colors.append(color_map['Document'])
# node_texts.append(f"Doc {len(nodes_added)+1}")
# node_hovers.append(f"Document {len(nodes_added)+1}:<br><br>{related['text']}")
# nodes_added.add(related_id)
# # Add edge with similarity weight
# G.add_edge(
# source_id,
# related_id,
# weight=similarity,
# relationship=f"Similarity: {similarity:.2f}"
# )
# # Create layout
# pos = nx.spring_layout(G, k=2.0, iterations=50)
# # Create edge trace
# edge_x = []
# edge_y = []
# edge_text = []
# for edge in G.edges(data=True):
# x0, y0 = pos[edge[0]]
# x1, y1 = pos[edge[1]]
# # Create curved line
# mid_x = (x0 + x1) / 2
# mid_y = (y0 + y1) / 2
# # Add some curvature
# mid_x += (y1 - y0) * 0.1
# mid_y -= (x1 - x0) * 0.1
# # Add points for curved line
# edge_x.extend([x0, mid_x, x1, None])
# edge_y.extend([y0, mid_y, y1, None])
# edge_text.append(edge[2]['relationship'])
# edge_trace = go.Scatter(
# x=edge_x,
# y=edge_y,
# line=dict(width=1.5, color='#9CA3AF'),
# hoverinfo='text',
# text=edge_text,
# mode='lines'
# )
# # Create node trace
# node_x = []
# node_y = []
# for node in G.nodes():
# x, y = pos[node]
# node_x.append(x)
# node_y.append(y)
# node_trace = go.Scatter(
# x=node_x,
# y=node_y,
# mode='markers+text',
# hoverinfo='text',
# text=node_texts,
# hovertext=node_hovers, # Full text shown on hover
# textposition="top center",
# marker=dict(
# size=30,
# color=node_colors,
# line=dict(width=2, color='white'),
# symbol='circle'
# ),
# customdata=node_hovers # Store full text for click events
# )
# # Create figure with updated layout
# fig = go.Figure(
# data=[edge_trace, node_trace],
# layout=go.Layout(
# title={
# 'text': 'Document Similarity Graph<br><sub>Click nodes to view full text</sub>',
# 'y': 0.95,
# 'x': 0.5,
# 'xanchor': 'center',
# 'yanchor': 'top'
# },
# showlegend=False,
# hovermode='closest',
# margin=dict(b=20, l=5, r=5, t=60),
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# plot_bgcolor='white',
# width=800,
# height=600,
# clickmode='event+select' # Enable click events
# )
# )
# return fig
# def create_interface(search_system: EnhancedLegalSearchSystem):
# """Create Gradio interface with interactive graph"""
# with gr.Blocks(css="footer {display: none !important;}") as demo:
# gr.Markdown("""
# # Enhanced Legal Search System
# Enter your legal query below to search through documents and get an AI-powered analysis.
# This system combines graph-based and semantic search capabilities for comprehensive legal research.
# """)
# with gr.Row():
# query_input = gr.Textbox(
# label="Legal Query",
# placeholder="e.g., What are the reporting obligations for banks under the Money Laundering Act?",
# lines=3
# )
# with gr.Row():
# search_button = gr.Button("Search & Analyze")
# status_output = gr.Textbox(
# label="Status",
# interactive=False
# )
# with gr.Tabs():
# with gr.TabItem("AI Legal Analysis"):
# analysis_output = gr.Markdown(
# label="AI-Generated Legal Analysis",
# value="Analysis will appear here..."
# )
# with gr.TabItem("Retrieved Documents"):
# docs_output = gr.Markdown(
# label="Source Documents",
# value="Search results will appear here..."
# )
# with gr.TabItem("Related Concepts"):
# concepts_output = gr.Json(
# label="Related Legal Concepts",
# value={}
# )
# with gr.TabItem("Knowledge Graph"):
# # Graph visualization
# graph_output = gr.Plot(
# label="Legal Knowledge Graph"
# )
# # Add text area for showing clicked document content
# selected_doc_content = gr.Textbox(
# label="Selected Document Content",
# interactive=False,
# lines=10
# )
# async def process_query(query):
# if not query.strip():
# return (
# "Please enter a query",
# "No analysis available",
# "No documents available",
# {},
# None,
# ""
# )
# results = await search_system.process_legal_query(query)
# graph_data = search_system.generate_document_graph(query)
# graph_fig = create_graph_visualization(graph_data)
# return (
# results['status'],
# results['answer'],
# results['documents'],
# {"related_concepts": results['related_concepts']},
# graph_fig,
# "Click on a node to view document content"
# )
# search_button.click(
# fn=process_query,
# inputs=[query_input],
# outputs=[
# status_output,
# analysis_output,
# docs_output,
# concepts_output,
# graph_output,
# selected_doc_content
# ]
# )
# return demo
# class LegalSearchSystem:
# def __init__(
# self,
# pinecone_api_key: str = "pcsk_43sajZ_MjcXR2yN5cAcVi8RARyB6i3NP3wLTnTLugbUcN9cUU4q5EfNmuwLPkmxAvykk9o",
# google_api_key: str = "AIzaSyDWHGMd8a70RbL3EBenfUwimcAHjhvgM6M",
# environment: str = "us-east-1",
# index_name: str = "pdf-embeddings",
# dimension: int = 384,
# embedding_model_name: str = "intfloat/e5-small-v2",
# device: str = "cpu"
# ):
# # Initialize Pinecone
# self.pc = Pinecone(api_key=pinecone_api_key)
# # Initialize LangChain with Gemini
# self.llm = ChatGoogleGenerativeAI(
# model="gemini-pro",
# temperature=0,
# google_api_key=google_api_key
# )
# # Initialize prompts
# self.map_prompt = PromptTemplate(
# template="""
# Analyze the following legal text segment and extract key information:
# TEXT: "{text}"
# Instructions:
# 1. Maintain all legal terminology exactly as written
# 2. Preserve section numbers and references
# 3. Keep all specific conditions and requirements
# 4. Include any mentioned time periods or deadlines
# DETAILED ANALYSIS:
# """,
# input_variables=["text"]
# )
# self.combine_prompt = PromptTemplate(
# template="""
# Based on the following excerpts from legal documents and the question: "{question}"
# EXCERPTS:
# {text}
# Instructions:
# 1. Synthesize a comprehensive answer that connects relevant sections
# 2. Maintain precise legal language from the source material
# 3. Reference specific sections and subsections where applicable
# 4. If there are seemingly disconnected pieces of information, explain their relationship
# 5. Highlight any conditions or exceptions that span multiple excerpts
# COMPREHENSIVE LEGAL ANALYSIS:
# """,
# input_variables=["text", "question"]
# )
# # Initialize chain
# self.chain = load_summarize_chain(
# llm=self.llm,
# chain_type="stuff",
# prompt=self.combine_prompt,
# verbose=True
# )
# # Initialize Pinecone index and embedding model
# self.index = self.pc.Index(index_name)
# self.embedding_model = SentenceTransformer(
# model_name_or_path=embedding_model_name,
# device=device
# )
# def search(self, query_text: str, top_k: int = 5, context_window: int = 1) -> Dict:
# """
# Perform a search and analysis of the legal query.
# """
# try:
# # Get search results with context
# results = self.query_and_summarize(
# query_text=query_text,
# top_k=top_k,
# context_window=context_window
# )
# # Format the results for display
# docs_markdown = self._format_documents(results['raw_results'])
# return {
# 'status': "Search completed successfully",
# 'documents': docs_markdown,
# 'analysis': results['summary'],
# 'source_pages': results['source_pages'],
# 'context_info': results['context_info']
# }
# except Exception as e:
# return {
# 'status': f"Error during search: {str(e)}",
# 'documents': "Error retrieving documents",
# 'analysis': "Error generating analysis",
# 'source_pages': [],
# 'context_info': {}
# }
# def query_and_summarize(
# self,
# query_text: str,
# top_k: int = 5,
# filter: Optional[Dict] = None,
# context_window: int = 1
# ) -> Dict:
# """
# Query Pinecone and generate a summary with enhanced context handling.
# """
# # Generate embedding for query
# query_embedding = self.embedding_model.encode(query_text).tolist()
# # Query Pinecone
# initial_results = self.index.query(
# vector=query_embedding,
# top_k=top_k,
# include_metadata=True,
# filter=filter
# )['matches']
# # Expand context
# expanded_results = []
# for match in initial_results:
# page_num = match['metadata']['page_number']
# context_filter = {
# "page_number": {
# "$gte": max(1, page_num - context_window),
# "$lte": page_num + context_window
# }
# }
# if filter:
# context_filter.update(filter)
# context_results = self.index.query(
# vector=self.embedding_model.encode(match['metadata']['text']).tolist(),
# top_k=2 * context_window + 1,
# include_metadata=True,
# filter=context_filter
# )['matches']
# expanded_results.extend(context_results)
# # Process results and generate summary
# documents = self._process_results(expanded_results, initial_results)
# summary = self.chain.run(
# input_documents=documents,
# question=query_text
# )
# return {
# 'raw_results': expanded_results,
# 'summary': summary,
# 'source_pages': list(set(doc.metadata['page_number'] for doc in documents)),
# 'context_info': {
# 'direct_matches': len([d for d in documents if d.metadata['context_type'] == "DIRECT MATCH"]),
# 'context_chunks': len([d for d in documents if d.metadata['context_type'] == "CONTEXT"])
# }
# }
# def _process_results(self, expanded_results: List[Dict], initial_results: List[Dict]) -> List[Document]:
# """
# Process and deduplicate search results.
# """
# seen_ids = set()
# documents = []
# for result in expanded_results:
# if result['id'] not in seen_ids:
# seen_ids.add(result['id'])
# is_direct_match = any(r['id'] == result['id'] for r in initial_results)
# documents.append(Document(
# page_content=result['metadata']['text'],
# metadata={
# 'score': result['score'],
# 'page_number': result['metadata']['page_number'],
# 'context_type': "DIRECT MATCH" if is_direct_match else "CONTEXT"
# }
# ))
# return sorted(documents, key=lambda x: x.metadata['page_number'])
# def _format_documents(self, results: List[Dict]) -> str:
# """
# Format search results as markdown.
# """
# markdown = "### Retrieved Documents\n\n"
# for i, result in enumerate(results, 1):
# markdown += f"**Document {i}** (Page {result['metadata']['page_number']})\n"
# markdown += f"```\n{result['metadata']['text']}\n```\n\n"
# return markdown
# async def process_query_async(query: str, search_system: LegalSearchSystem, graph_search_system: EnhancedLegalSearchSystem):
# """
# Asynchronous function to process both traditional and graph-based searches
# """
# if not query.strip():
# return "Please enter a query", "", "", "", {}
# # Regular search (synchronous)
# results = search_system.search(query)
# try:
# # Graph search (asynchronous)
# graph_results = await graph_search_system.process_legal_query(query)
# graph_documents = graph_results.get('documents', "Error processing graph search")
# graph_concepts = graph_results.get('related_concepts', {})
# except Exception as e:
# graph_documents = f"Error processing graph search: {str(e)}"
# graph_concepts = {}
# graph_data = graph_search_system.generate_document_graph(query)
# graph_fig = create_graph_visualization(graph_data)
# return (
# results['status'],
# results['documents'],
# results['analysis'],
# graph_documents,
# graph_concepts,
# graph_fig,
# "Click on a node to view document content"
# )
# def create_interface(graph_search_system: EnhancedLegalSearchSystem):
# search_system = LegalSearchSystem()
# with gr.Blocks(css="footer {display: none !important;}") as demo:
# gr.Markdown("""
# # Corporate Law Legal Search Engine
# Enter your legal query below to search through documents and get an AI-powered analysis.Queires only related to corporate law will give relevant information
# """)
# with gr.Row():
# query_input = gr.Textbox(
# label="Legal Query",
# placeholder="e.g., What are the key principles of contract law?",
# lines=3
# )
# with gr.Row():
# search_button = gr.Button("Search & Analyze")
# status_output = gr.Textbox(
# label="Status",
# interactive=False
# )
# with gr.Tabs():
# with gr.TabItem("Search Results"):
# docs_output = gr.Markdown(
# label="Retrieved Documents",
# value="Search results will appear here..."
# )
# with gr.TabItem("AI Legal Analysis"):
# summary_output = gr.Markdown(
# label="AI-Generated Legal Analysis",
# value="Analysis will appear here..."
# )
# with gr.TabItem("Retrieved Documents through Graph Rag"):
# docs_output_graph = gr.Markdown(
# label="Source Documents",
# value="Search results will appear here..."
# )
# graph_analysis_output = gr.JSON(
# label="Related Concepts",
# value={}
# )
# with gr.TabItem("Knowledge Graph"):
# # Graph visualization
# graph_output = gr.Plot(
# label="Legal Knowledge Graph"
# )
# # Add text area for showing clicked document content
# selected_doc_content = gr.Textbox(
# label="Selected Document Content",
# interactive=False,
# lines=10
# )
# def process_query(query):
# # Create event loop if it doesn't exist
# try:
# loop = asyncio.get_event_loop()
# except RuntimeError:
# loop = asyncio.new_event_loop()
# asyncio.set_event_loop(loop)
# # Run the async function and get results
# return loop.run_until_complete(
# process_query_async(query, search_system, graph_search_system)
# )
# search_button.click(
# fn=process_query,
# inputs=[query_input],
# outputs=[
# status_output,
# docs_output,
# summary_output,
# docs_output_graph,
# graph_analysis_output,
# graph_output,
# selected_doc_content
# ]
# )
# return demo
# if __name__ == "__main__":
# graph_search_system = EnhancedLegalSearchSystem(
# google_api_key="AIzaSyDWHGMd8a70RbL3EBenfUwimcAHjhvgM6M",
# neo4j_url="neo4j+s://a63462d0.databases.neo4j.io",
# neo4j_username="neo4j",
# neo4j_password="nU8Ut5N8k7LmQzNPe7vUbpZxMirK8rHrmLuzPc2G_Zc"
# )
# demo = create_interface(graph_search_system)
# demo.launch()
import os
import gradio as gr
from pinecone import Pinecone
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Optional
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.summarize import load_summarize_chain
from langchain.prompts import PromptTemplate, ChatPromptTemplate
from langchain.docstore.document import Document
import time
import asyncio
import plotly.graph_objects as go
from neo4j import GraphDatabase
import networkx as nx
from langchain_community.vectorstores import Neo4jVector
from langchain.chains.summarize import load_summarize_chain
from langchain.chains import LLMChain
from langchain_google_genai import GoogleGenerativeAI, GoogleGenerativeAIEmbeddings
class EnhancedLegalSearchSystem:
def __init__(
self,
google_api_key: str,
neo4j_url: str,
neo4j_username: str,
neo4j_password: str,
embedding_model_name: str = "intfloat/e5-small-v2",
device: str = "cpu"
):
"""Initialize the Enhanced Legal Search System"""
# Initialize LLM
self.llm = GoogleGenerativeAI(
model="gemini-pro",
google_api_key=google_api_key,
temperature=0.1
)
# Initialize embeddings
self.embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=google_api_key,
task_type="retrieval_query"
)
# Initialize Neo4j connection
self.neo4j_driver = GraphDatabase.driver(
neo4j_url,
auth=(neo4j_username, neo4j_password)
)
# Initialize vector store
self.vector_store = Neo4jVector.from_existing_graph(
embedding=self.embeddings,
url=neo4j_url,
username=neo4j_username,
password=neo4j_password,
node_label="Document",
text_node_properties=["text"],
embedding_node_property="embedding"
)
# Initialize additional embedding model for enhanced search
self.local_embedding_model = SentenceTransformer(
model_name_or_path=embedding_model_name,
device=device
)
# Initialize prompts
self.init_prompts()
def __del__(self):
"""Cleanup Neo4j connection"""
if hasattr(self, 'neo4j_driver'):
self.neo4j_driver.close()
def init_prompts(self):
"""Initialize enhanced prompts for legal analysis"""
self.qa_prompt = ChatPromptTemplate.from_messages([
("system", """You are a legal expert assistant specializing in Indian law.
Analyze the following legal context and provide a detailed, structured answer to the question.
Include specific sections, rules, and precedents where applicable.
Format your response with clear headings and bullet points for better readability.
Context: {context}"""),
("human", "Question: {question}")
])
self.map_prompt = PromptTemplate(
template="""
Analyze the following legal text segment:
TEXT: "{text}"
Instructions:
1. Extract and summarize the key legal points
2. Maintain all legal terminology exactly as written
3. Preserve section numbers and references
4. Keep all specific conditions and requirements
5. Include any mentioned time periods or deadlines
KEY POINTS:
""",
input_variables=["text"] # Removed page_number as it's not used in the template
)
self.combine_prompt = PromptTemplate(
template="""
Question: {question}
Using ONLY the information from the following legal document excerpts, provide a comprehensive answer:
{text}
Instructions:
1. Base your response EXCLUSIVELY on the provided document excerpts
2. If the documents don't contain enough information to fully answer the question, explicitly state what's missing
3. Use direct quotes when appropriate
4. Organize the response by relevant sections found in the documents
5. If there are conflicting statements across documents, highlight them
ANALYSIS:
""",
input_variables=["text", "question"]
)
# Initialize summarize chain
self.chain = load_summarize_chain(
llm=self.llm,
chain_type="map_reduce",
map_prompt=self.map_prompt,
combine_prompt=self.combine_prompt,
verbose=True
)
def get_related_legal_entities(self, query: str) -> List[Dict]:
"""Retrieve related legal entities and their relationships"""
# Corrected Cypher query to handle aggregation properly
cypher_query = """
// First, let's check if nodes exist and get their labels
MATCH (d:Document)
WHERE toLower(d.text) CONTAINS toLower($query)
WITH d
// Match all relationships from the document, collecting their types
OPTIONAL MATCH (d)-[r]-(connected)
WHERE NOT connected:Document // Avoid direct document-to-document relations
WITH d,
collect(DISTINCT type(r)) as relationTypes,
collect(DISTINCT labels(connected)) as connectedLabels
// Now use these to build our main query
MATCH (d:Document)-[r1]-(e)
WHERE toLower(d.text) CONTAINS toLower($query)
AND NOT e:Document // Exclude direct document connections
WITH d, r1, e
// Get secondary connections, but be more specific about what we're looking for
OPTIONAL MATCH (e)-[r2]-(related)
WHERE (related:Entity OR related:Concept OR related:Section OR related:Case)
AND related <> d // Prevent cycles back to original document
WITH d, {
source_id: id(d),
source_text: d.text,
document_type: COALESCE(d.type, "Unknown"),
relationship_type: type(r1),
entity: {
id: id(e),
type: CASE WHEN e:Entity THEN "Entity"
WHEN e:Concept THEN "Concept"
WHEN e:Section THEN "Section"
WHEN e:Case THEN "Case"
ELSE "Other" END,
text: COALESCE(e.text, e.name, e.title, "Unnamed"),
properties: properties(e)
},
related_entities: collect(DISTINCT {
id: id(related),
type: CASE WHEN related:Entity THEN "Entity"
WHEN related:Concept THEN "Concept"
WHEN related:Section THEN "Section"
WHEN related:Case THEN "Case"
ELSE "Other" END,
relationship: type(r2),
text: COALESCE(related.text, related.name, related.title, "Unnamed"),
properties: properties(related)
})
} as result
WHERE result.entity.text IS NOT NULL // Filter out any results with null entity text
RETURN DISTINCT result
ORDER BY result.source_id, result.entity.id
LIMIT 25
"""
try:
with self.neo4j_driver.session() as session:
# Execute the improved query
result = session.run(cypher_query, {"query": query})
entities = [record["result"] for record in result]
# Log the results for debugging
print(f"Found {len(entities)} related entities")
if entities:
for entity in entities:
print(f"Entity: {entity['entity']['text']}")
print(f"Source: {entity['source_text'][:100]}...")
print(f"Related: {len(entity['related_entities'])} connections")
return entities
except Exception as e:
print(f"Error in get_related_legal_entities: {str(e)}")
return []
async def process_legal_query(
self,
question: str,
top_k: int = 5,
context_window: int = 1
) -> Dict[str, any]:
"""Process a legal query using both graph and vector search capabilities"""
try:
# 1. Perform semantic search
semantic_results = self.vector_store.similarity_search(
question,
k=top_k,
search_type="hybrid"
)
# 2. Get related legal entities with the full question context
related_entities = self.get_related_legal_entities(question)
# Log the counts for debugging
print(f"Found {len(semantic_results)} semantic results")
print(f"Found {len(related_entities)} related entities")
# 3. Expand context with related documents
expanded_results = self.expand_context(
semantic_results,
context_window
)
# 4. Generate comprehensive answer
documents = self._process_results(expanded_results, semantic_results)
# 5. Prepare context for LLM
context = self._prepare_context(documents, related_entities)
# 6. Generate answer using LLM
chain = LLMChain(llm=self.llm, prompt=self.qa_prompt)
response = await chain.ainvoke({
"context": context,
"question": question
})
answer = response.get('text', '')
# 7. Return structured response with explicit related concepts
return {
"status": "Success",
"answer": answer,
"documents": self._format_documents(documents),
"related_concepts": related_entities, # This should now contain data
"source_ids": sorted(list(set(doc.metadata.get('document_id', 'unknown') for doc in documents))),
"context_info": {
"direct_matches": len([d for d in documents if d.metadata.get('context_type') == "DIRECT MATCH"]),
"context_chunks": len([d for d in documents if d.metadata.get('context_type') == "CONTEXT"])
}
}
except Exception as e:
print(f"Error in process_legal_query: {str(e)}") # Add error logging
return {
"status": f"Error: {str(e)}",
"answer": "An error occurred while processing your query.",
"documents": "",
"related_concepts": [],
"source_ids": [],
"context_info": {}
}
def expand_context(
self,
initial_results: List[Document],
context_window: int
) -> List[Document]:
"""Expand context around search results"""
expanded_results = []
seen_ids = set()
for doc in initial_results:
doc_id = doc.metadata.get('document_id', doc.page_content[:50])
if doc_id not in seen_ids:
# Query for related documents
context_results = self.vector_store.similarity_search(
doc.page_content,
k=2 * context_window + 1,
search_type="hybrid"
)
for result in context_results:
result_id = result.metadata.get('document_id', result.page_content[:50])
if result_id not in seen_ids:
expanded_results.append(result)
seen_ids.add(result_id)
return expanded_results
def _process_results(self, expanded_results: List[Document], initial_results: List[Document]) -> List[Document]:
"""Process and deduplicate search results"""
seen_ids = set()
documents = []
for doc in expanded_results:
doc_id = doc.metadata.get('document_id', doc.page_content[:50])
if doc_id not in seen_ids:
seen_ids.add(doc_id)
is_direct_match = any(
r.metadata.get('document_id', r.page_content[:50]) == doc_id
for r in initial_results
)
doc.metadata['context_type'] = (
"DIRECT MATCH" if is_direct_match else "CONTEXT"
)
documents.append(doc)
return sorted(
documents,
key=lambda x: x.metadata.get('document_id', 'unknown')
)
def _prepare_context(
self,
documents: List[Document],
related_entities: List[Dict]
) -> str:
"""Prepare context for LLM processing"""
context = "\n\nLegal Documents:\n" + "\n".join([
f"[Document ID: {doc.metadata.get('document_id', 'unknown')}] {doc.page_content}"
for doc in documents
])
if related_entities:
context += "\n\nRelated Legal Concepts and Relationships:\n"
for entity in related_entities:
context += f"\n• {entity.get('entity', '')}"
if entity.get('related_entities'):
for related in entity['related_entities']:
if related.get('entity'):
context += f"\n - {related['type']}: {related['entity']}"
return context
def _format_documents(self, documents: List[Document]) -> str:
"""Format documents as markdown"""
markdown = "### Retrieved Documents\n\n"
for i, doc in enumerate(documents, 1):
markdown += (
f"**Document {i}** "
f"(ID: {doc.metadata.get('document_id', 'unknown')}, "
f"{doc.metadata.get('context_type', 'UNKNOWN')})\n"
f"```\n{doc.page_content}\n```\n\n"
)
return markdown
def generate_document_graph(
self,
query: str,
top_k: int = 5,
similarity_threshold: float = 0.5
) -> List[Dict]:
"""Generate graph data based on document similarity and relationships"""
try:
# 1. Get initial semantic search results
semantic_results = self.vector_store.similarity_search(
query,
k=top_k,
search_type="hybrid"
)
# 2. Get embeddings for all documents
doc_texts = [doc.page_content for doc in semantic_results]
doc_embeddings = self.local_embedding_model.encode(doc_texts)
# 3. Create graph data structure
graph_data = []
seen_docs = set()
# First, add all documents as nodes
for i, doc in enumerate(semantic_results):
doc_id = doc.metadata.get('document_id', f'doc_{i}')
if doc_id not in seen_docs:
seen_docs.add(doc_id)
doc_type = doc.metadata.get('type', 'document')
# Create node entry
graph_data.append({
'source_id': doc_id,
'source_text': doc.page_content[:200], # Truncate for display
'document_type': doc_type,
'entity': {
'id': doc_id,
'type': 'Document',
'text': f"Document {i + 1}",
'properties': {
'similarity': 1.0,
'length': len(doc.page_content)
}
},
'related_entities': []
})
# Add relationships based on similarity
from sklearn.metrics.pairwise import cosine_similarity
similarity_matrix = cosine_similarity(doc_embeddings)
# Create relationships between similar documents
for i in range(len(semantic_results)):
related = []
for j in range(len(semantic_results)):
if i != j and similarity_matrix[i][j] > similarity_threshold:
doc_j = semantic_results[j]
doc_j_id = doc_j.metadata.get('document_id', f'doc_{j}')
related.append({
'id': doc_j_id,
'type': 'Document',
'relationship': 'similar_to',
'text': f"Document {j + 1}",
'properties': {
'similarity_score': float(similarity_matrix[i][j])
}
})
# Add related documents to the graph data
if related:
graph_data[i]['related_entities'] = related
return graph_data
except Exception as e:
print(f"Error generating document graph: {str(e)}")
return []
def create_graph_visualization(graph_data: List[Dict]) -> go.Figure:
"""Create an interactive graph visualization using Plotly"""
if not graph_data:
return go.Figure(layout=go.Layout(title='No documents found'))
# Initialize graph
G = nx.Graph()
# Color mapping
color_map = {
'Document': '#3B82F6', # blue
'Section': '#10B981', # green
'Reference': '#F59E0B' # yellow
}
# Node information storage
node_colors = []
node_texts = []
node_hovers = [] # Full text for hover
nodes_added = set()
# Process nodes and edges
for data in graph_data:
source_id = data['source_id']
source_text = data['source_text']
# Add main document node
if source_id not in nodes_added:
G.add_node(source_id)
node_colors.append(color_map['Document'])
# Short text for display
node_texts.append(f"Doc {len(nodes_added)+1}")
# Full text for hover/click
node_hovers.append(f"Document {len(nodes_added)+1}:<br><br>{source_text}")
nodes_added.add(source_id)
# Process related documents
for related in data.get('related_entities', []):
related_id = related['id']
similarity = related['properties'].get('similarity_score', 0.0)
if related_id not in nodes_added:
G.add_node(related_id)
node_colors.append(color_map['Document'])
node_texts.append(f"Doc {len(nodes_added)+1}")
node_hovers.append(f"Document {len(nodes_added)+1}:<br><br>{related['text']}")
nodes_added.add(related_id)
# Add edge with similarity weight
G.add_edge(
source_id,
related_id,
weight=similarity,
relationship=f"Similarity: {similarity:.2f}"
)
# Create layout
pos = nx.spring_layout(G, k=2.0, iterations=50)
# Create edge trace
edge_x = []
edge_y = []
edge_text = []
for edge in G.edges(data=True):
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
# Create curved line
mid_x = (x0 + x1) / 2
mid_y = (y0 + y1) / 2
# Add some curvature
mid_x += (y1 - y0) * 0.1
mid_y -= (x1 - x0) * 0.1
# Add points for curved line
edge_x.extend([x0, mid_x, x1, None])
edge_y.extend([y0, mid_y, y1, None])
edge_text.append(edge[2]['relationship'])
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
line=dict(width=1.5, color='#9CA3AF'),
hoverinfo='text',
text=edge_text,
mode='lines'
)
# Create node trace
node_x = []
node_y = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x,
y=node_y,
mode='markers+text',
hoverinfo='text',
text=node_texts,
hovertext=node_hovers, # Full text shown on hover
textposition="top center",
marker=dict(
size=30,
color=node_colors,
line=dict(width=2, color='white'),
symbol='circle'
),
customdata=node_hovers # Store full text for click events
)
# Create figure with updated layout
fig = go.Figure(
data=[edge_trace, node_trace],
layout=go.Layout(
title={
'text': 'Document Similarity Graph<br><sub>Click nodes to view full text</sub>',
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
showlegend=False,
hovermode='closest',
margin=dict(b=20, l=5, r=5, t=60),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor='white',
width=800,
height=600,
clickmode='event+select' # Enable click events
)
)
return fig
def create_interface(graph_search_system: EnhancedLegalSearchSystem):
"""Create Gradio interface with interactive graph"""
search_system = LegalSearchSystem()
with gr.Blocks(css="footer {display: none !important;}") as demo:
gr.Markdown("""
# Corporate Law Legal Search Engine
Enter your legal query below to search through documents and get an AI-powered analysis. Queries only related to corporate law will give relevant information.
""")
with gr.Row():
query_input = gr.Textbox(
label="Legal Query",
placeholder="e.g., What are the key principles of contract law?",
lines=3
)
with gr.Row():
search_button = gr.Button("Search & Analyze")
status_output = gr.Textbox(
label="Status",
interactive=False
)
with gr.Tabs():
with gr.TabItem("Search Results"):
docs_output = gr.Markdown(
label="Retrieved Documents",
value="Search results will appear here..."
)
with gr.TabItem("AI Legal Analysis"):
summary_output = gr.Markdown(
label="AI-Generated Legal Analysis",
value="Analysis will appear here..."
)
with gr.TabItem("Retrieved Documents through Graph Rag"):
docs_output_graph = gr.Markdown(
label="Source Documents",
value="Search results will appear here..."
)
graph_analysis_output = gr.JSON(
label="Related Concepts",
value={}
)
with gr.TabItem("Knowledge Graph"):
# Graph visualization
graph_output = gr.Plot(
label="Legal Knowledge Graph"
)
# Add text area for showing clicked document content
selected_doc_content = gr.Textbox(
label="Selected Document Content",
interactive=False,
lines=10
)
async def process_query(query):
if not query.strip():
return (
"Please enter a query",
"No documents available from Pinecone",
"No analysis available from Pinecone",
"No documents available from Neo4j",
{},
None,
""
)
# Run the regular RAG search
rag_results = search_system.search(query)
# Run the graph-based RAG search
graph_results = await graph_search_system.process_legal_query(query)
graph_data = graph_search_system.generate_document_graph(query)
graph_fig = create_graph_visualization(graph_data)
return (
rag_results['status'],
rag_results['documents'],
rag_results['analysis'],
graph_results['documents'],
{"related_concepts": graph_results['related_concepts']},
graph_fig,
"Click on a node to view document content"
)
search_button.click(
fn=process_query,
inputs=[query_input],
outputs=[
status_output,
docs_output,
summary_output,
docs_output_graph,
graph_analysis_output,
graph_output,
selected_doc_content
]
)
return demo
class LegalSearchSystem:
def __init__(
self,
pinecone_api_key: str = "pcsk_43sajZ_MjcXR2yN5cAcVi8RARyB6i3NP3wLTnTLugbUcN9cUU4q5EfNmuwLPkmxAvykk9o",
google_api_key: str = "AIzaSyDWHGMd8a70RbL3EBenfUwimcAHjhvgM6M",
environment: str = "us-east-1",
index_name: str = "pdf-embeddings",
dimension: int = 384,
embedding_model_name: str = "intfloat/e5-small-v2",
device: str = "cpu"
):
# Initialize Pinecone
self.pc = Pinecone(api_key=pinecone_api_key)
# Initialize LangChain with Gemini
self.llm = ChatGoogleGenerativeAI(
model="gemini-pro",
temperature=0,
google_api_key=google_api_key
)
# Initialize prompts
self.map_prompt = PromptTemplate(
template="""
Analyze the following legal text segment and extract key information:
TEXT: "{text}"
Instructions:
1. Maintain all legal terminology exactly as written
2. Preserve section numbers and references
3. Keep all specific conditions and requirements
4. Include any mentioned time periods or deadlines
DETAILED ANALYSIS:
""",
input_variables=["text"]
)
self.combine_prompt = PromptTemplate(
template="""
Based on the following excerpts from legal documents and the question: "{question}"
EXCERPTS:
{text}
Instructions:
1. Synthesize a comprehensive answer that connects relevant sections
2. Maintain precise legal language from the source material
3. Reference specific sections and subsections where applicable
4. If there are seemingly disconnected pieces of information, explain their relationship
5. Highlight any conditions or exceptions that span multiple excerpts
COMPREHENSIVE LEGAL ANALYSIS:
""",
input_variables=["text", "question"]
)
# Initialize chain
self.chain = load_summarize_chain(
llm=self.llm,
chain_type="stuff",
prompt=self.combine_prompt,
verbose=True
)
# Initialize Pinecone index and embedding model
self.index = self.pc.Index(index_name)
self.embedding_model = SentenceTransformer(
model_name_or_path=embedding_model_name,
device=device
)
def search(self, query_text: str, top_k: int = 5, context_window: int = 1) -> Dict:
"""
Perform a search and analysis of the legal query.
"""
try:
# Get search results with context
results = self.query_and_summarize(
query_text=query_text,
top_k=top_k,
context_window=context_window
)
# Format the results for display
docs_markdown = self._format_documents(results['raw_results'])
return {
'status': "Search completed successfully",
'documents': docs_markdown,
'analysis': results['summary'],
'source_pages': results['source_pages'],
'context_info': results['context_info']
}
except Exception as e:
return {
'status': f"Error during search: {str(e)}",
'documents': "Error retrieving documents",
'analysis': "Error generating analysis",
'source_pages': [],
'context_info': {}
}
def query_and_summarize(
self,
query_text: str,
top_k: int = 5,
filter: Optional[Dict] = None,
context_window: int = 1
) -> Dict:
"""
Query Pinecone and generate a summary with enhanced context handling.
"""
# Generate embedding for query
query_embedding = self.embedding_model.encode(query_text).tolist()
# Query Pinecone
initial_results = self.index.query(
vector=query_embedding,
top_k=top_k,
include_metadata=True,
filter=filter
)['matches']
# Expand context
expanded_results = []
for match in initial_results:
page_num = match['metadata']['page_number']
context_filter = {
"page_number": {
"$gte": max(1, page_num - context_window),
"$lte": page_num + context_window
}
}
if filter:
context_filter.update(filter)
context_results = self.index.query(
vector=self.embedding_model.encode(match['metadata']['text']).tolist(),
top_k=2 * context_window + 1,
include_metadata=True,
filter=context_filter
)['matches']
expanded_results.extend(context_results)
# Process results and generate summary
documents = self._process_results(expanded_results, initial_results)
summary = self.chain.run(
input_documents=documents,
question=query_text
)
return {
'raw_results': expanded_results,
'summary': summary,
'source_pages': list(set(doc.metadata['page_number'] for doc in documents)),
'context_info': {
'direct_matches': len([d for d in documents if d.metadata['context_type'] == "DIRECT MATCH"]),
'context_chunks': len([d for d in documents if d.metadata['context_type'] == "CONTEXT"])
}
}
def _process_results(self, expanded_results: List[Dict], initial_results: List[Dict]) -> List[Document]:
"""
Process and deduplicate search results.
"""
seen_ids = set()
documents = []
for result in expanded_results:
if result['id'] not in seen_ids:
seen_ids.add(result['id'])
is_direct_match = any(r['id'] == result['id'] for r in initial_results)
documents.append(Document(
page_content=result['metadata']['text'],
metadata={
'score': result['score'],
'page_number': result['metadata']['page_number'],
'context_type': "DIRECT MATCH" if is_direct_match else "CONTEXT"
}
))
return sorted(documents, key=lambda x: x.metadata['page_number'])
def _format_documents(self, results: List[Dict]) -> str:
"""
Format search results as markdown.
"""
markdown = "### Retrieved Documents\n\n"
for i, result in enumerate(results, 1):
markdown += f"**Document {i}** (Page {result['metadata']['page_number']})\n"
markdown += f"```\n{result['metadata']['text']}\n```\n\n"
return markdown
if __name__ == "__main__":
graph_search_system = EnhancedLegalSearchSystem(
google_api_key="AIzaSyDWHGMd8a70RbL3EBenfUwimcAHjhvgM6M",
neo4j_url="neo4j+s://a63462d0.databases.neo4j.io",
neo4j_username="neo4j",
neo4j_password="nU8Ut5N8k7LmQzNPe7vUbpZxMirK8rHrmLuzPc2G_Zc"
)
demo = create_interface(graph_search_system)
demo.launch() |