File size: 14,099 Bytes
94ef601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os, math, random, argparse, logging
from pathlib import Path
from typing import Optional, Union, List, Callable
from collections import OrderedDict
from packaging import version
from tqdm.auto import tqdm
from omegaconf import OmegaConf
        
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import torchvision


class PFODESolver():
    def __init__(self, scheduler, t_initial=1, t_terminal=0,) -> None:
        self.t_initial = t_initial
        self.t_terminal = t_terminal
        self.scheduler = scheduler

        train_step_terminal = 0 
        train_step_initial = train_step_terminal + self.scheduler.config.num_train_timesteps # 0+1000
        
        self.stepsize  = (t_terminal-t_initial) / (train_step_terminal - train_step_initial) #1/1000
        
    
    def get_timesteps(self, t_start, t_end, num_steps):
        # (b,) -> (b,1)
        t_start = t_start[:, None]
        t_end = t_end[:, None]
        assert t_start.dim() == 2
        
        timepoints = torch.arange(0, num_steps, 1).expand(t_start.shape[0], num_steps).to(device=t_start.device)
        interval = (t_end - t_start) / (torch.ones([1], device=t_start.device) * num_steps)
        timepoints = t_start + interval * timepoints
        
        timesteps = (self.scheduler.num_train_timesteps - 1) + (timepoints - self.t_initial) / self.stepsize # correspondint to StableDiffusion indexing system, from 999 (t_init) -> 0 (dt)
        return timesteps.round().long()
        # return timesteps.floor().long()
    
    def solve(self, 
              latents, 
              unet, 
              t_start, 
              t_end, 
              prompt_embeds, 
              negative_prompt_embeds, 
              guidance_scale=1.0,
              num_steps = 2,
              num_windows = 1,
    ):
        assert t_start.dim() == 1
        assert guidance_scale >= 1 and torch.all(torch.gt(t_start, t_end))
        
        do_classifier_free_guidance = True if guidance_scale > 1 else False
        bsz = latents.shape[0]
            
        if do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            
        timestep_cond = None
        if unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(guidance_scale - 1).repeat(bsz)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=unet.config.time_cond_proj_dim
            ).to(device=latents.device, dtype=latents.dtype)
            
        
        timesteps = self.get_timesteps(t_start, t_end, num_steps).to(device=latents.device)
        timestep_interval = self.scheduler.config.num_train_timesteps // (num_windows * num_steps)

        # 7. Denoising loop
        with torch.no_grad():
            # for i in tqdm(range(num_steps)):
            for i in range(num_steps):
                
                t = torch.cat([timesteps[:, i]]*2) if do_classifier_free_guidance else timesteps[:, i]
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    return_dict=False,
                )[0]

                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)


                # STEP: compute the previous noisy sample x_t -> x_t-1
                # latents = self.scheduler.step(noise_pred, timesteps[:, i].cpu(), latents, return_dict=False)[0]

                batch_timesteps = timesteps[:, i].cpu()
                prev_timestep = batch_timesteps - timestep_interval
                # prev_timestep = batch_timesteps - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps

                alpha_prod_t = self.scheduler.alphas_cumprod[batch_timesteps]
                alpha_prod_t_prev = torch.zeros_like(alpha_prod_t)
                for ib in range(prev_timestep.shape[0]): 
                    alpha_prod_t_prev[ib] = self.scheduler.alphas_cumprod[prev_timestep[ib]] if prev_timestep[ib] >= 0 else self.scheduler.final_alpha_cumprod
                beta_prod_t = 1 - alpha_prod_t
                
                alpha_prod_t = alpha_prod_t.to(device=latents.device, dtype=latents.dtype)
                alpha_prod_t_prev = alpha_prod_t_prev.to(device=latents.device, dtype=latents.dtype)
                beta_prod_t = beta_prod_t.to(device=latents.device, dtype=latents.dtype)

                # 3. compute predicted original sample from predicted noise also called
                # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
                if self.scheduler.config.prediction_type == "epsilon":
                    pred_original_sample = (latents - beta_prod_t[:,None,None,None] ** (0.5) * noise_pred) / alpha_prod_t[:, None,None,None] ** (0.5)
                    pred_epsilon = noise_pred
                # elif self.scheduler.config.prediction_type == "sample":
                #     pred_original_sample = noise_pred
                #     pred_epsilon = (latents - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
                elif self.scheduler.config.prediction_type == "v_prediction":
                    pred_original_sample = (alpha_prod_t[:,None,None,None]**0.5) * latents - (beta_prod_t[:,None,None,None]**0.5) * noise_pred
                    pred_epsilon = (alpha_prod_t[:,None,None,None]**0.5) * noise_pred + (beta_prod_t[:,None,None,None]**0.5) * latents
                else:
                    raise ValueError(
                        f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `epsilon`, `sample`, or"
                        " `v_prediction`"
                    )
                    
                pred_sample_direction = (1 - alpha_prod_t_prev[:,None,None,None]) ** (0.5) * pred_epsilon
                latents = alpha_prod_t_prev[:,None,None,None] ** (0.5) * pred_original_sample + pred_sample_direction

            
        return latents
    
    
    
    
    



class PFODESolverSDXL():
    def __init__(self, scheduler, t_initial=1, t_terminal=0,) -> None:
        self.t_initial = t_initial
        self.t_terminal = t_terminal
        self.scheduler = scheduler

        train_step_terminal = 0 
        train_step_initial = train_step_terminal + self.scheduler.config.num_train_timesteps # 0+1000
        
        self.stepsize  = (t_terminal-t_initial) / (train_step_terminal - train_step_initial) #1/1000
    
    def get_timesteps(self, t_start, t_end, num_steps):
        # (b,) -> (b,1)
        t_start = t_start[:, None]
        t_end = t_end[:, None]
        assert t_start.dim() == 2
        
        timepoints = torch.arange(0, num_steps, 1).expand(t_start.shape[0], num_steps).to(device=t_start.device)
        interval = (t_end - t_start) / (torch.ones([1], device=t_start.device) * num_steps)
        timepoints = t_start + interval * timepoints
        
        timesteps = (self.scheduler.num_train_timesteps - 1) + (timepoints - self.t_initial) / self.stepsize # correspondint to StableDiffusion indexing system, from 999 (t_init) -> 0 (dt)
        return timesteps.round().long()
        # return timesteps.floor().long()
    
    def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
        # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
        add_time_ids = list(original_size + crops_coords_top_left + target_size)
        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        return add_time_ids

    def solve(self, 
            latents, 
            unet, 
            t_start, 
            t_end, 
            prompt_embeds,
            pooled_prompt_embeds,
            negative_prompt_embeds,
            negative_pooled_prompt_embeds,
            guidance_scale=1.0,
            num_steps = 10,
            num_windows = 4,
            resolution = 1024,
    ):
        assert t_start.dim() == 1
        assert guidance_scale >= 1 and torch.all(torch.gt(t_start, t_end))
        dtype = latents.dtype
        device = latents.device
        bsz = latents.shape[0]
        do_classifier_free_guidance = True if guidance_scale > 1 else False
        
        add_text_embeds = pooled_prompt_embeds
        add_time_ids = torch.cat(
            # [self._get_add_time_ids((1024, 1024), (0, 0), (1024, 1024), dtype) for _ in range(bsz)]
            [self._get_add_time_ids((resolution, resolution), (0, 0), (resolution, resolution), dtype) for _ in range(bsz)]
        ).to(device)
        negative_add_time_ids = add_time_ids
        
        if do_classifier_free_guidance:
            # prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
            add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
            
        timestep_cond = None
        if unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(guidance_scale - 1).repeat(bsz)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=unet.config.time_cond_proj_dim
            ).to(device=latents.device, dtype=latents.dtype)
            
        
        timesteps = self.get_timesteps(t_start, t_end, num_steps).to(device=latents.device)
        timestep_interval = self.scheduler.config.num_train_timesteps // (num_windows * num_steps)

        # 7. Denoising loop
        with torch.no_grad():
            # for i in tqdm(range(num_steps)):
            for i in range(num_steps):
                # expand the latents if we are doing classifier free guidance
                t = torch.cat([timesteps[:, i]]*2) if do_classifier_free_guidance else timesteps[:, i]
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
                noise_pred = unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)


                # STEP: compute the previous noisy sample x_t -> x_t-1
                # latents = self.scheduler.step(noise_pred, timesteps[:, i].cpu(), latents, return_dict=False)[0]

                batch_timesteps = timesteps[:, i].cpu()
                prev_timestep = batch_timesteps - timestep_interval
                # prev_timestep = batch_timesteps - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps

                alpha_prod_t = self.scheduler.alphas_cumprod[batch_timesteps]
                alpha_prod_t_prev = torch.zeros_like(alpha_prod_t)
                for ib in range(prev_timestep.shape[0]): 
                    alpha_prod_t_prev[ib] = self.scheduler.alphas_cumprod[prev_timestep[ib]] if prev_timestep[ib] >= 0 else self.scheduler.final_alpha_cumprod
                beta_prod_t = 1 - alpha_prod_t
                
                alpha_prod_t = alpha_prod_t.to(device=latents.device, dtype=latents.dtype)
                alpha_prod_t_prev = alpha_prod_t_prev.to(device=latents.device, dtype=latents.dtype)
                beta_prod_t = beta_prod_t.to(device=latents.device, dtype=latents.dtype)

                # 3. compute predicted original sample from predicted noise also called
                # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
                if self.scheduler.config.prediction_type == "epsilon":
                    pred_original_sample = (latents - beta_prod_t[:,None,None,None] ** (0.5) * noise_pred) / alpha_prod_t[:, None,None,None] ** (0.5)
                    pred_epsilon = noise_pred
                # elif self.scheduler.config.prediction_type == "sample":
                #     pred_original_sample = noise_pred
                #     pred_epsilon = (latents - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
                # elif self.scheduler.config.prediction_type == "v_prediction":
                #     pred_original_sample = (alpha_prod_t**0.5) * latents - (beta_prod_t**0.5) * noise_pred
                #     pred_epsilon = (alpha_prod_t**0.5) * noise_pred + (beta_prod_t**0.5) * latents
                else:
                    raise ValueError(
                        f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `epsilon`, `sample`, or"
                        " `v_prediction`"
                    )
                    
                pred_sample_direction = (1 - alpha_prod_t_prev[:,None,None,None]) ** (0.5) * pred_epsilon
                latents = alpha_prod_t_prev[:,None,None,None] ** (0.5) * pred_original_sample + pred_sample_direction

            
        return latents