Spaces:
Running
Running
pratyushmaini
commited on
Commit
·
0d2e03d
1
Parent(s):
a084b1e
new template test
Browse files- app.py +128 -0
- src/assets/text_content.py +12 -0
- src/utils.py +236 -0
- versions/v1.0.csv +9 -0
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from src.assets.text_content import TITLE, INTRODUCTION_TEXT
|
4 |
+
from src.utils import get_data, compare_plots, filter_search
|
5 |
+
|
6 |
+
############################ For Leaderboards #############################
|
7 |
+
DATA_PATH = 'versions'
|
8 |
+
latest_flag = True #Set flag to iclude latest data in Details and Versions Tab
|
9 |
+
latest_df, latest_vname, previous_df, previous_vname = get_data(DATA_PATH, latest_flag)
|
10 |
+
|
11 |
+
global prev_df
|
12 |
+
prev_df = previous_df[0]
|
13 |
+
def select_prev_df(name):
|
14 |
+
ind = previous_vname.index(name)
|
15 |
+
prev_df = previous_df[ind]
|
16 |
+
return prev_df
|
17 |
+
|
18 |
+
############################ For Plots ####################################
|
19 |
+
global plot_df, MODEL_COLS
|
20 |
+
plot_df = latest_df[0]
|
21 |
+
MODEL_COLS = list(plot_df['Model'].unique())
|
22 |
+
|
23 |
+
|
24 |
+
############# MAIN APPLICATION ######################
|
25 |
+
demo = gr.Blocks()
|
26 |
+
with demo:
|
27 |
+
gr.HTML(TITLE)
|
28 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
29 |
+
|
30 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
31 |
+
with gr.TabItem("🥇 TOFU Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
|
32 |
+
with gr.Row():
|
33 |
+
search_bar = gr.Textbox(
|
34 |
+
placeholder=" 🔍 Search for models - separate multiple queries with `;` and press ENTER...",
|
35 |
+
show_label=False,
|
36 |
+
elem_id="search-bar",
|
37 |
+
)
|
38 |
+
|
39 |
+
leaderboard_table = gr.components.Dataframe(
|
40 |
+
value=latest_df[0],
|
41 |
+
elem_id="leaderboard-table",
|
42 |
+
interactive=False,
|
43 |
+
visible=True,
|
44 |
+
)
|
45 |
+
|
46 |
+
# Add a dummy leaderboard to handle search queries from the latest_df and not update latest_df
|
47 |
+
dummy_leaderboard_table = gr.components.Dataframe(
|
48 |
+
value=latest_df[0],
|
49 |
+
elem_id="leaderboard-table",
|
50 |
+
interactive=False,
|
51 |
+
visible=False,
|
52 |
+
)
|
53 |
+
|
54 |
+
search_bar.submit(
|
55 |
+
filter_search,
|
56 |
+
[dummy_leaderboard_table, search_bar],
|
57 |
+
leaderboard_table,
|
58 |
+
queue=True
|
59 |
+
)
|
60 |
+
with gr.TabItem("📈 Plot", id=3):
|
61 |
+
with gr.Row():
|
62 |
+
model_cols = gr.CheckboxGroup(
|
63 |
+
MODEL_COLS,
|
64 |
+
label="Select Models 🤖",
|
65 |
+
value=[],
|
66 |
+
elem_id="column-select",
|
67 |
+
interactive=True,
|
68 |
+
)
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
plot_grdf = gr.DataFrame(
|
72 |
+
value=plot_df,
|
73 |
+
visible=False
|
74 |
+
)
|
75 |
+
with gr.Row():
|
76 |
+
# Output block for the plot
|
77 |
+
plot_output = gr.Plot()
|
78 |
+
|
79 |
+
model_cols.change(
|
80 |
+
compare_plots,
|
81 |
+
[plot_grdf, model_cols],
|
82 |
+
plot_output,
|
83 |
+
queue=True
|
84 |
+
)
|
85 |
+
|
86 |
+
with gr.TabItem("🔄 Versions and Details", elem_id="details", id=2):
|
87 |
+
with gr.Row():
|
88 |
+
ver_selection = gr.Dropdown(
|
89 |
+
previous_vname, label="Select Version 🕹️", value=previous_vname[0]
|
90 |
+
)
|
91 |
+
with gr.Row():
|
92 |
+
search_bar_prev = gr.Textbox(
|
93 |
+
placeholder=" 🔍 Search for models - separate multiple queries with `;` and press ENTER...",
|
94 |
+
show_label=False,
|
95 |
+
elem_id="search-bar-2",
|
96 |
+
)
|
97 |
+
|
98 |
+
prev_table = gr.components.Dataframe(
|
99 |
+
value=prev_df,
|
100 |
+
elem_id="leaderboard-table",
|
101 |
+
interactive=False,
|
102 |
+
visible=True,
|
103 |
+
)
|
104 |
+
|
105 |
+
dummy_prev_table = gr.components.Dataframe(
|
106 |
+
value=prev_df,
|
107 |
+
elem_id="leaderboard-table",
|
108 |
+
interactive=False,
|
109 |
+
visible=False,
|
110 |
+
)
|
111 |
+
|
112 |
+
search_bar_prev.submit(
|
113 |
+
filter_search,
|
114 |
+
[dummy_prev_table, search_bar_prev],
|
115 |
+
prev_table,
|
116 |
+
queue=True
|
117 |
+
)
|
118 |
+
|
119 |
+
ver_selection.change(
|
120 |
+
select_prev_df,
|
121 |
+
[ver_selection],
|
122 |
+
prev_table,
|
123 |
+
queue=True
|
124 |
+
)
|
125 |
+
|
126 |
+
demo.load()
|
127 |
+
demo.queue()
|
128 |
+
demo.launch()
|
src/assets/text_content.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
TITLE = """<h1 align="center" id="space-title"> 🏆 TOFU Leaderboard</h1>"""
|
2 |
+
|
3 |
+
INTRODUCTION_TEXT = """
|
4 |
+
TOFU leaderboard description.
|
5 |
+
"""
|
6 |
+
|
7 |
+
SHORT_NAMES = {
|
8 |
+
"KL": "KL",
|
9 |
+
"Grad Ascent": "Grad Ascent",
|
10 |
+
"Gradient Difference": "Grad Diff",
|
11 |
+
"Oracle": "Oracle",
|
12 |
+
}
|
src/utils.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from src.assets.text_content import SHORT_NAMES
|
7 |
+
|
8 |
+
def update_cols(df: pd.DataFrame) -> pd.DataFrame:
|
9 |
+
'''
|
10 |
+
Change three header rows to a single header row
|
11 |
+
Args:
|
12 |
+
df: Raw dataframe containing 3 separate header rows
|
13 |
+
Remove this function if the dataframe has only one header row
|
14 |
+
Returns:
|
15 |
+
df: Updated dataframe which has only 1 header row instead of 3
|
16 |
+
'''
|
17 |
+
default_cols = list(df.columns)
|
18 |
+
|
19 |
+
# First 4 columns are initalised in 'update', Append additional columns for games Model, Clemscore, ALL(PLayed) and ALL(Main Score)
|
20 |
+
update = ['Model', 'Clemscore', 'Played', 'Quality Score']
|
21 |
+
game_metrics = default_cols[4:]
|
22 |
+
|
23 |
+
# Change columns Names for each Game
|
24 |
+
for i in range(len(game_metrics)):
|
25 |
+
if i%3 == 0:
|
26 |
+
game = game_metrics[i]
|
27 |
+
update.append(str(game).capitalize() + "(Played)")
|
28 |
+
update.append(str(game).capitalize() + "(Quality Score)")
|
29 |
+
update.append(str(game).capitalize() + "(Quality Score[std])")
|
30 |
+
|
31 |
+
# Create a dict to change names of the columns
|
32 |
+
map_cols = {}
|
33 |
+
for i in range(len(default_cols)):
|
34 |
+
map_cols[default_cols[i]] = str(update[i])
|
35 |
+
|
36 |
+
df = df.rename(columns=map_cols)
|
37 |
+
df = df.iloc[2:]
|
38 |
+
|
39 |
+
return df
|
40 |
+
|
41 |
+
def process_df(df: pd.DataFrame) -> pd.DataFrame:
|
42 |
+
'''
|
43 |
+
Process dataframe - Remove repition in model names, convert datatypes to sort by "float" instead of "str"
|
44 |
+
Args:
|
45 |
+
df: Unprocessed Dataframe (after using update_cols)
|
46 |
+
Returns:
|
47 |
+
df: Processed Dataframe
|
48 |
+
'''
|
49 |
+
|
50 |
+
# Change column type to float from str
|
51 |
+
list_column_names = list(df.columns)
|
52 |
+
model_col_name = list_column_names[0]
|
53 |
+
for col in list_column_names:
|
54 |
+
if col != model_col_name:
|
55 |
+
df[col] = df[col].astype(float)
|
56 |
+
|
57 |
+
# Remove repetition in model names, if any
|
58 |
+
models_list = []
|
59 |
+
for i in range(len(df)):
|
60 |
+
model_name = df.iloc[i][model_col_name]
|
61 |
+
splits = model_name.split('--')
|
62 |
+
splits = [split.replace('-t0.0', '') for split in splits] # Comment to not remove -t0.0
|
63 |
+
if splits[0] == splits[1]:
|
64 |
+
models_list.append(splits[0])
|
65 |
+
else:
|
66 |
+
models_list.append(splits[0] + "--" + splits[1])
|
67 |
+
df[model_col_name] = models_list
|
68 |
+
|
69 |
+
return df
|
70 |
+
|
71 |
+
def get_data(path: str, flag: bool):
|
72 |
+
'''
|
73 |
+
Get a list of all version names and respective Dataframes
|
74 |
+
Args:
|
75 |
+
path: Path to the directory containing CSVs of different versions -> v0.9.csv, v1.0.csv, ....
|
76 |
+
flag: Set this flag to include the latest version in Details and Versions tab
|
77 |
+
Returns:
|
78 |
+
latest_df: singular list containing dataframe of the latest version of the leaderboard with only 4 columns
|
79 |
+
latest_vname: list of the name of latest version
|
80 |
+
previous_df: list of dataframes for previous versions (can skip latest version if required)
|
81 |
+
previous_vname: list of the names for the previous versions (INCLUDED IN Details and Versions Tab)
|
82 |
+
'''
|
83 |
+
# Check if Directory is empty
|
84 |
+
list_versions = os.listdir(path)
|
85 |
+
if not list_versions:
|
86 |
+
print("Directory is empty")
|
87 |
+
|
88 |
+
else:
|
89 |
+
files = [file for file in list_versions if file.endswith('.csv')]
|
90 |
+
files.sort(reverse=True)
|
91 |
+
file_names = [os.path.splitext(file)[0] for file in files]
|
92 |
+
|
93 |
+
DFS = []
|
94 |
+
for file in files:
|
95 |
+
df = pd.read_csv(os.path.join(path, file))
|
96 |
+
df = update_cols(df) # Remove if by default there is only one header row
|
97 |
+
df = process_df(df) # Process Dataframe
|
98 |
+
df = df.sort_values(by=list(df.columns)[1], ascending=False) # Sort by clemscore
|
99 |
+
DFS.append(df)
|
100 |
+
|
101 |
+
# Only keep relavant columns for the main leaderboard
|
102 |
+
latest_df_dummy = DFS[0]
|
103 |
+
all_columns = list(latest_df_dummy.columns)
|
104 |
+
keep_columns = all_columns[0:4]
|
105 |
+
latest_df_dummy = latest_df_dummy.drop(columns=[c for c in all_columns if c not in keep_columns])
|
106 |
+
|
107 |
+
latest_df = [latest_df_dummy]
|
108 |
+
latest_vname = [file_names[0]]
|
109 |
+
previous_df = []
|
110 |
+
previous_vname = []
|
111 |
+
for df, name in zip(DFS, file_names):
|
112 |
+
previous_df.append(df)
|
113 |
+
previous_vname.append(name)
|
114 |
+
|
115 |
+
if not flag:
|
116 |
+
previous_df.pop(0)
|
117 |
+
previous_vname.pop(0)
|
118 |
+
|
119 |
+
return latest_df, latest_vname, previous_df, previous_vname
|
120 |
+
|
121 |
+
return None
|
122 |
+
|
123 |
+
|
124 |
+
# ['Model', 'Clemscore', 'All(Played)', 'All(Quality Score)']
|
125 |
+
def compare_plots(df: pd.DataFrame, LIST: list):
|
126 |
+
'''
|
127 |
+
Quality Score v/s % Played plot by selecting models
|
128 |
+
Args:
|
129 |
+
LIST: The list of models to show in the plot, updated from frontend
|
130 |
+
Returns:
|
131 |
+
fig: The plot
|
132 |
+
'''
|
133 |
+
short_names = label_map(LIST)
|
134 |
+
|
135 |
+
list_columns = list(df.columns)
|
136 |
+
df = df[df[list_columns[0]].isin(LIST)]
|
137 |
+
|
138 |
+
X = df[list_columns[2]]
|
139 |
+
fig, ax = plt.subplots()
|
140 |
+
for model in LIST:
|
141 |
+
short = short_names[model]
|
142 |
+
# same_flag = short_names[model][1]
|
143 |
+
model_df = df[df[list_columns[0]] == model]
|
144 |
+
x = model_df[list_columns[2]]
|
145 |
+
y = model_df[list_columns[3]]
|
146 |
+
color = plt.cm.rainbow(x / max(X)) # Use a colormap for different colors
|
147 |
+
plt.scatter(x, y, color=color)
|
148 |
+
# if same_flag:
|
149 |
+
plt.annotate(f'{short}', (x, y), textcoords="offset points", xytext=(0, -15), ha='center', rotation=0)
|
150 |
+
# else:
|
151 |
+
# plt.annotate(f'{short}', (x, y), textcoords="offset points", xytext=(20, -3), ha='center', rotation=0)
|
152 |
+
ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)
|
153 |
+
ax.set_xticks(np.arange(0,110,10))
|
154 |
+
plt.xlim(-10, 110)
|
155 |
+
plt.ylim(-10, 110)
|
156 |
+
plt.xlabel('% Played')
|
157 |
+
plt.ylabel('Quality Score')
|
158 |
+
plt.title('Overview of benchmark results')
|
159 |
+
plt.show()
|
160 |
+
|
161 |
+
return fig
|
162 |
+
|
163 |
+
def shorten_model_name(full_name):
|
164 |
+
# Split the name into parts
|
165 |
+
parts = full_name.split('-')
|
166 |
+
|
167 |
+
# Process the name parts to keep only the parts with digits (model sizes and versions)
|
168 |
+
short_name_parts = [part for part in parts if any(char.isdigit() for char in part)]
|
169 |
+
|
170 |
+
if len(parts) == 1:
|
171 |
+
short_name = ''.join(full_name[0:min(3, len(full_name))])
|
172 |
+
else:
|
173 |
+
# Join the parts to form the short name
|
174 |
+
short_name = '-'.join(short_name_parts)
|
175 |
+
|
176 |
+
# Remove any leading or trailing hyphens
|
177 |
+
short_name = full_name[0] + '-'+ short_name.strip('-')
|
178 |
+
|
179 |
+
return short_name
|
180 |
+
|
181 |
+
def label_map(model_list: list) -> dict:
|
182 |
+
'''
|
183 |
+
Generate a map from long names to short names, to plot them in frontend graph
|
184 |
+
Define the short names in src/assets/text_content.py
|
185 |
+
Args:
|
186 |
+
model_list: A list of long model names
|
187 |
+
Returns:
|
188 |
+
short_name: A map from long to list of short name + indication if models are same or different
|
189 |
+
'''
|
190 |
+
short_names = {}
|
191 |
+
for model_name in model_list:
|
192 |
+
# splits = model_name.split('--')
|
193 |
+
# if len(splits) != 1:
|
194 |
+
# splits[0] = SHORT_NAMES[splits[0] + '-']
|
195 |
+
# splits[1] = SHORT_NAMES[splits[1] + '-']
|
196 |
+
# # Define the short name and indicate there are two different models
|
197 |
+
# short_names[model_name] = [splits[0] + '--' + splits[1], 0]
|
198 |
+
# else:
|
199 |
+
if model_name in SHORT_NAMES:
|
200 |
+
short_name = SHORT_NAMES[model_name]
|
201 |
+
else:
|
202 |
+
short_name = shorten_model_name(model_name)
|
203 |
+
|
204 |
+
# Define the short name and indicate both models are same
|
205 |
+
short_names[model_name] = short_name
|
206 |
+
|
207 |
+
return short_names
|
208 |
+
|
209 |
+
def filter_search(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
210 |
+
'''
|
211 |
+
Filter the dataframe based on the search query
|
212 |
+
Args:
|
213 |
+
df: Unfiltered dataframe
|
214 |
+
query: a string of queries separated by ";"
|
215 |
+
Return:
|
216 |
+
filtered_df: Dataframe containing searched queries in the 'Model' column
|
217 |
+
'''
|
218 |
+
queries = query.split(';')
|
219 |
+
list_cols = list(df.columns)
|
220 |
+
df_len = len(df)
|
221 |
+
filtered_models = []
|
222 |
+
models_list = list(df[list_cols[0]])
|
223 |
+
for q in queries:
|
224 |
+
q = q.lower()
|
225 |
+
for i in range(df_len):
|
226 |
+
model_name = models_list[i]
|
227 |
+
if q in model_name.lower():
|
228 |
+
filtered_models.append(model_name) # Append model names containing query q
|
229 |
+
|
230 |
+
filtered_df = df[df[list_cols[0]].isin(filtered_models)]
|
231 |
+
|
232 |
+
if query == "":
|
233 |
+
return df
|
234 |
+
|
235 |
+
return filtered_df
|
236 |
+
|
versions/v1.0.csv
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Method,Compute,PPL,Truth,ROUGE,MAPO
|
2 |
+
DPO,Forget,0.0768753815825175,0.3986066518668836,0.9565206583678539,0.8712100761297452
|
3 |
+
DPO,Retain,0.5996286412275281,0.3602207419553394,0.6659869365178336,0.10860875787554469
|
4 |
+
Grad Ascent,Forget,0.01276005409910086,0.8739653533368998,0.023760115576687335,0.557119299008513
|
5 |
+
Grad Ascent,Retain,0.9153365174437643,0.5117768071328227,0.13019174875223205,0.2736769500895253
|
6 |
+
IDK,Forget,0.9575847571359651,0.14495165859171177,0.5215967278097287,0.9513180970650936
|
7 |
+
IDK,Retain,0.5081723023409522,0.7260250131902866,0.46407442478973215,0.9008803129332287
|
8 |
+
KL,Forget,0.23284021819861755,0.7973023013038227,0.9713336423092905,0.674807833567933
|
9 |
+
KL,Retain,0.04023188230471908,0.7071738714102987,0.4663170982373773,0.6658539062921722
|