Spaces:
Running
Running
pratyushmaini
commited on
Commit
·
35416d7
1
Parent(s):
cf8c271
clean up
Browse files- src/assets/text_content.py +0 -12
- src/utils.py +0 -236
src/assets/text_content.py
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
TITLE = """<h1 align="center" id="space-title"> 🏆 TOFU Leaderboard</h1>"""
|
2 |
-
|
3 |
-
INTRODUCTION_TEXT = """
|
4 |
-
TOFU leaderboard description.
|
5 |
-
"""
|
6 |
-
|
7 |
-
SHORT_NAMES = {
|
8 |
-
"KL": "KL",
|
9 |
-
"Grad Ascent": "Grad Ascent",
|
10 |
-
"Gradient Difference": "Grad Diff",
|
11 |
-
"Oracle": "Oracle",
|
12 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/utils.py
DELETED
@@ -1,236 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import pandas as pd
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
from src.assets.text_content import SHORT_NAMES
|
7 |
-
|
8 |
-
def update_cols(df: pd.DataFrame) -> pd.DataFrame:
|
9 |
-
'''
|
10 |
-
Change three header rows to a single header row
|
11 |
-
Args:
|
12 |
-
df: Raw dataframe containing 3 separate header rows
|
13 |
-
Remove this function if the dataframe has only one header row
|
14 |
-
Returns:
|
15 |
-
df: Updated dataframe which has only 1 header row instead of 3
|
16 |
-
'''
|
17 |
-
default_cols = list(df.columns)
|
18 |
-
|
19 |
-
# First 4 columns are initalised in 'update', Append additional columns for games Model, Clemscore, ALL(PLayed) and ALL(Main Score)
|
20 |
-
update = ['Model', 'Clemscore', 'Played', 'Quality Score']
|
21 |
-
game_metrics = default_cols[4:]
|
22 |
-
|
23 |
-
# Change columns Names for each Game
|
24 |
-
for i in range(len(game_metrics)):
|
25 |
-
if i%3 == 0:
|
26 |
-
game = game_metrics[i]
|
27 |
-
update.append(str(game).capitalize() + "(Played)")
|
28 |
-
update.append(str(game).capitalize() + "(Quality Score)")
|
29 |
-
update.append(str(game).capitalize() + "(Quality Score[std])")
|
30 |
-
|
31 |
-
# Create a dict to change names of the columns
|
32 |
-
map_cols = {}
|
33 |
-
for i in range(len(default_cols)):
|
34 |
-
map_cols[default_cols[i]] = str(update[i])
|
35 |
-
|
36 |
-
df = df.rename(columns=map_cols)
|
37 |
-
df = df.iloc[2:]
|
38 |
-
|
39 |
-
return df
|
40 |
-
|
41 |
-
def process_df(df: pd.DataFrame) -> pd.DataFrame:
|
42 |
-
'''
|
43 |
-
Process dataframe - Remove repition in model names, convert datatypes to sort by "float" instead of "str"
|
44 |
-
Args:
|
45 |
-
df: Unprocessed Dataframe (after using update_cols)
|
46 |
-
Returns:
|
47 |
-
df: Processed Dataframe
|
48 |
-
'''
|
49 |
-
|
50 |
-
# Change column type to float from str
|
51 |
-
list_column_names = list(df.columns)
|
52 |
-
model_col_name = list_column_names[0]
|
53 |
-
for col in list_column_names:
|
54 |
-
if col != model_col_name:
|
55 |
-
df[col] = df[col].astype(float)
|
56 |
-
|
57 |
-
# Remove repetition in model names, if any
|
58 |
-
models_list = []
|
59 |
-
for i in range(len(df)):
|
60 |
-
model_name = df.iloc[i][model_col_name]
|
61 |
-
splits = model_name.split('--')
|
62 |
-
splits = [split.replace('-t0.0', '') for split in splits] # Comment to not remove -t0.0
|
63 |
-
if splits[0] == splits[1]:
|
64 |
-
models_list.append(splits[0])
|
65 |
-
else:
|
66 |
-
models_list.append(splits[0] + "--" + splits[1])
|
67 |
-
df[model_col_name] = models_list
|
68 |
-
|
69 |
-
return df
|
70 |
-
|
71 |
-
def get_data(path: str, flag: bool):
|
72 |
-
'''
|
73 |
-
Get a list of all version names and respective Dataframes
|
74 |
-
Args:
|
75 |
-
path: Path to the directory containing CSVs of different versions -> v0.9.csv, v1.0.csv, ....
|
76 |
-
flag: Set this flag to include the latest version in Details and Versions tab
|
77 |
-
Returns:
|
78 |
-
latest_df: singular list containing dataframe of the latest version of the leaderboard with only 4 columns
|
79 |
-
latest_vname: list of the name of latest version
|
80 |
-
previous_df: list of dataframes for previous versions (can skip latest version if required)
|
81 |
-
previous_vname: list of the names for the previous versions (INCLUDED IN Details and Versions Tab)
|
82 |
-
'''
|
83 |
-
# Check if Directory is empty
|
84 |
-
list_versions = os.listdir(path)
|
85 |
-
if not list_versions:
|
86 |
-
print("Directory is empty")
|
87 |
-
|
88 |
-
else:
|
89 |
-
files = [file for file in list_versions if file.endswith('.csv')]
|
90 |
-
files.sort(reverse=True)
|
91 |
-
file_names = [os.path.splitext(file)[0] for file in files]
|
92 |
-
|
93 |
-
DFS = []
|
94 |
-
for file in files:
|
95 |
-
df = pd.read_csv(os.path.join(path, file))
|
96 |
-
df = update_cols(df) # Remove if by default there is only one header row
|
97 |
-
df = process_df(df) # Process Dataframe
|
98 |
-
df = df.sort_values(by=list(df.columns)[1], ascending=False) # Sort by clemscore
|
99 |
-
DFS.append(df)
|
100 |
-
|
101 |
-
# Only keep relavant columns for the main leaderboard
|
102 |
-
latest_df_dummy = DFS[0]
|
103 |
-
all_columns = list(latest_df_dummy.columns)
|
104 |
-
keep_columns = all_columns[0:4]
|
105 |
-
latest_df_dummy = latest_df_dummy.drop(columns=[c for c in all_columns if c not in keep_columns])
|
106 |
-
|
107 |
-
latest_df = [latest_df_dummy]
|
108 |
-
latest_vname = [file_names[0]]
|
109 |
-
previous_df = []
|
110 |
-
previous_vname = []
|
111 |
-
for df, name in zip(DFS, file_names):
|
112 |
-
previous_df.append(df)
|
113 |
-
previous_vname.append(name)
|
114 |
-
|
115 |
-
if not flag:
|
116 |
-
previous_df.pop(0)
|
117 |
-
previous_vname.pop(0)
|
118 |
-
|
119 |
-
return latest_df, latest_vname, previous_df, previous_vname
|
120 |
-
|
121 |
-
return None
|
122 |
-
|
123 |
-
|
124 |
-
# ['Model', 'Clemscore', 'All(Played)', 'All(Quality Score)']
|
125 |
-
def compare_plots(df: pd.DataFrame, LIST: list):
|
126 |
-
'''
|
127 |
-
Quality Score v/s % Played plot by selecting models
|
128 |
-
Args:
|
129 |
-
LIST: The list of models to show in the plot, updated from frontend
|
130 |
-
Returns:
|
131 |
-
fig: The plot
|
132 |
-
'''
|
133 |
-
short_names = label_map(LIST)
|
134 |
-
|
135 |
-
list_columns = list(df.columns)
|
136 |
-
df = df[df[list_columns[0]].isin(LIST)]
|
137 |
-
|
138 |
-
X = df[list_columns[2]]
|
139 |
-
fig, ax = plt.subplots()
|
140 |
-
for model in LIST:
|
141 |
-
short = short_names[model]
|
142 |
-
# same_flag = short_names[model][1]
|
143 |
-
model_df = df[df[list_columns[0]] == model]
|
144 |
-
x = model_df[list_columns[2]]
|
145 |
-
y = model_df[list_columns[3]]
|
146 |
-
color = plt.cm.rainbow(x / max(X)) # Use a colormap for different colors
|
147 |
-
plt.scatter(x, y, color=color)
|
148 |
-
# if same_flag:
|
149 |
-
plt.annotate(f'{short}', (x, y), textcoords="offset points", xytext=(0, -15), ha='center', rotation=0)
|
150 |
-
# else:
|
151 |
-
# plt.annotate(f'{short}', (x, y), textcoords="offset points", xytext=(20, -3), ha='center', rotation=0)
|
152 |
-
ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)
|
153 |
-
ax.set_xticks(np.arange(0,110,10))
|
154 |
-
plt.xlim(-10, 110)
|
155 |
-
plt.ylim(-10, 110)
|
156 |
-
plt.xlabel('% Played')
|
157 |
-
plt.ylabel('Quality Score')
|
158 |
-
plt.title('Overview of benchmark results')
|
159 |
-
plt.show()
|
160 |
-
|
161 |
-
return fig
|
162 |
-
|
163 |
-
def shorten_model_name(full_name):
|
164 |
-
# Split the name into parts
|
165 |
-
parts = full_name.split('-')
|
166 |
-
|
167 |
-
# Process the name parts to keep only the parts with digits (model sizes and versions)
|
168 |
-
short_name_parts = [part for part in parts if any(char.isdigit() for char in part)]
|
169 |
-
|
170 |
-
if len(parts) == 1:
|
171 |
-
short_name = ''.join(full_name[0:min(3, len(full_name))])
|
172 |
-
else:
|
173 |
-
# Join the parts to form the short name
|
174 |
-
short_name = '-'.join(short_name_parts)
|
175 |
-
|
176 |
-
# Remove any leading or trailing hyphens
|
177 |
-
short_name = full_name[0] + '-'+ short_name.strip('-')
|
178 |
-
|
179 |
-
return short_name
|
180 |
-
|
181 |
-
def label_map(model_list: list) -> dict:
|
182 |
-
'''
|
183 |
-
Generate a map from long names to short names, to plot them in frontend graph
|
184 |
-
Define the short names in src/assets/text_content.py
|
185 |
-
Args:
|
186 |
-
model_list: A list of long model names
|
187 |
-
Returns:
|
188 |
-
short_name: A map from long to list of short name + indication if models are same or different
|
189 |
-
'''
|
190 |
-
short_names = {}
|
191 |
-
for model_name in model_list:
|
192 |
-
# splits = model_name.split('--')
|
193 |
-
# if len(splits) != 1:
|
194 |
-
# splits[0] = SHORT_NAMES[splits[0] + '-']
|
195 |
-
# splits[1] = SHORT_NAMES[splits[1] + '-']
|
196 |
-
# # Define the short name and indicate there are two different models
|
197 |
-
# short_names[model_name] = [splits[0] + '--' + splits[1], 0]
|
198 |
-
# else:
|
199 |
-
if model_name in SHORT_NAMES:
|
200 |
-
short_name = SHORT_NAMES[model_name]
|
201 |
-
else:
|
202 |
-
short_name = shorten_model_name(model_name)
|
203 |
-
|
204 |
-
# Define the short name and indicate both models are same
|
205 |
-
short_names[model_name] = short_name
|
206 |
-
|
207 |
-
return short_names
|
208 |
-
|
209 |
-
def filter_search(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
210 |
-
'''
|
211 |
-
Filter the dataframe based on the search query
|
212 |
-
Args:
|
213 |
-
df: Unfiltered dataframe
|
214 |
-
query: a string of queries separated by ";"
|
215 |
-
Return:
|
216 |
-
filtered_df: Dataframe containing searched queries in the 'Model' column
|
217 |
-
'''
|
218 |
-
queries = query.split(';')
|
219 |
-
list_cols = list(df.columns)
|
220 |
-
df_len = len(df)
|
221 |
-
filtered_models = []
|
222 |
-
models_list = list(df[list_cols[0]])
|
223 |
-
for q in queries:
|
224 |
-
q = q.lower()
|
225 |
-
for i in range(df_len):
|
226 |
-
model_name = models_list[i]
|
227 |
-
if q in model_name.lower():
|
228 |
-
filtered_models.append(model_name) # Append model names containing query q
|
229 |
-
|
230 |
-
filtered_df = df[df[list_cols[0]].isin(filtered_models)]
|
231 |
-
|
232 |
-
if query == "":
|
233 |
-
return df
|
234 |
-
|
235 |
-
return filtered_df
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|