from fawkes.protection import Fawkes from fawkes.utils import Faces, reverse_process_cloaked from fawkes.differentiator import FawkesMaskGeneration import numpy as np import gradio as gr # import os IMG_SIZE = 112 PREPROCESS = 'raw' def generate_cloak_images(protector, image_X, target_emb=None): cloaked_image_X = protector.compute(image_X, target_emb) return cloaked_image_X def predict(img, level, th=0.04, sd=1e7, lr=10, max_step=500, batch_size=1, format='png', separate_target=True, debug=False, no_align=False, exp="", maximize=True, save_last_on_failed=True): print(img.ndim) fwks = Fawkes("extractor_2", '0', 1, mode=level) current_param = "-".join([str(x) for x in [fwks.th, sd, fwks.lr, fwks.max_step, batch_size, format, separate_target, debug]]) faces = Faces(['./Current Face'], [img], fwks.aligner, verbose=1, no_align=False) original_images = faces.cropped_faces if len(original_images) == 0: print("No face detected. ") return 2 original_images = np.array(original_images) if current_param != fwks.protector_param: fwks.protector_param = current_param if fwks.protector is not None: del fwks.protector if batch_size == -1: batch_size = len(original_images) fwks.protector = FawkesMaskGeneration(fwks.feature_extractors_ls, batch_size=batch_size, mimic_img=True, intensity_range=PREPROCESS, initial_const=sd, learning_rate=fwks.lr, max_iterations=fwks.max_step, l_threshold=fwks.th, verbose=debug, maximize=maximize, keep_final=False, image_shape=(IMG_SIZE, IMG_SIZE, 3), loss_method='features', tanh_process=True, save_last_on_failed=save_last_on_failed, ) protected_images = generate_cloak_images(fwks.protector, original_images) faces.cloaked_cropped_faces = protected_images final_images, images_without_face = faces.merge_faces( reverse_process_cloaked(protected_images, preprocess=PREPROCESS), reverse_process_cloaked(original_images, preprocess=PREPROCESS)) return final_images[-1] print("Done!") fwks.run_protection([img], format='jpeg') splt = img.split(".") # print(os.listdir('/tmp')) return splt[0] + "_cloaked.jpeg" gr.Interface(fn=predict, inputs=[gr.components.Image(type='numpy'), gr.components.Radio(["low", "mid", "high"], label="``Protection Level")], outputs=gr.components.Image(type="pil"), allow_flagging="never").launch(show_error=True, quiet=False)