langchaindoc / app.py
lucebert
add try catch on langggraph client
7908478
import os
import chainlit as cl
from langgraph_sdk import get_client
from langchain_core.messages import HumanMessage
LANGGRAPH_DEPLOYMENT = os.environ.get("LANGGRAPH_DEPLOYMENT")
@cl.on_chat_start
async def on_start():
# Initialize the Langgraph client
langraph_client = get_client(
url=LANGGRAPH_DEPLOYMENT
)
try:
assistants = await langraph_client.assistants.search(
graph_id="simple_rag", metadata={"created_by": "system"}
)
thread = await langraph_client.threads.create()
except Exception as e:
print(f"Error occurred while creating assistant or thread: {str(e)}")
# You might want to handle the error appropriately here
# For example, you could raise a custom error or return a default value
raise
cl.user_session.set("langraph_client", langraph_client)
cl.user_session.set("assistant_id", assistants[0]["assistant_id"])
cl.user_session.set("thread_id", thread["thread_id"])
@cl.on_message
async def main(message: cl.Message):
msg = cl.Message(content="")
langraph_client = cl.user_session.get("langraph_client")
assistant_id = cl.user_session.get("assistant_id")
thread_id = cl.user_session.get("thread_id")
async with cl.Step(name="Scanning documentation") as step:
async for chunk in langraph_client.runs.stream(
thread_id=thread_id,
assistant_id=assistant_id,
input={
"messages": [
HumanMessage(content=message.content)
]
},
stream_mode="events",
):
if chunk.event == "events":
if chunk.data["event"] == "on_chat_model_stream":
await msg.stream_token(chunk.data["data"]["chunk"]["content"])
else:
if "data" in chunk.data and "input" in chunk.data["data"]:
step.input = chunk.data["data"]["input"]
if "data" in chunk.data and "output" in chunk.data["data"]:
step.output = chunk.data["data"]["output"]
await msg.send()