Spaces:
Sleeping
Sleeping
File size: 7,189 Bytes
9587bef d674e45 9587bef d674e45 985fbf6 d674e45 985fbf6 9587bef e47c27e 9587bef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import io
import os
import warnings
import numpy as np
import time
from matplotlib import pyplot as plt
import math
from IPython.display import display
from PIL import Image, ImageDraw
import getpass
from transformers import AutoTokenizer, AutoModel
import langchain
from langchain_openai import OpenAIEmbeddings
from langchain.vectorstores import Pinecone
from pinecone import Pinecone, ServerlessSpec
from tqdm.notebook import tqdm
import openai
from openai import OpenAI
import string
import pandas as pd
import urllib.request
from io import BytesIO
import pillow_heif
from itertools import islice
from sklearn.metrics.pairwise import cosine_similarity
import gc
import ast
from langchain.text_splitter import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer
import streamlit as st
import re
import Levenshtein
from tabulate import tabulate
#from stability_sdk import client
#import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
open_ai_key_file = "open_ai_key.txt" # Your OPEN AI Key in this file
with open(open_ai_key_file, "r") as f:
for line in f:
OPENAI_KEY = line.strip()
OPEN_AI_API_KEY = line
break
# GETTING OpenAI and Pinecone api key
openai.api_key = OPENAI_KEY
openai_client = OpenAI(api_key=openai.api_key)
# GETTING OpenAI and Pinecone api key
openai.api_key = OPENAI_KEY
pc_apikey = "959aded5-f2fe-4f9e-966c-3c7bd5907202"
openai_client = OpenAI(api_key=openai.api_key)
# Function to get the embeddings of the text using OpenAI text-embedding-ada-002 model
def get_openai_embedding(openai_client, text, model="text-embedding-ada-002"):
text = text.replace("\n", " ")
return openai_client.embeddings.create(input = [text], model=model).data[0].embedding
def display_image_grid(image_caption_tuples):
# Number of images
n = len(image_caption_tuples)
# Grid dimensions
columns = 5
rows = math.ceil(n / columns)
# Plot size
plt.figure(figsize=(20, rows * 4)) # Adjust figure size as needed
for i, (image_path, caption) in enumerate(image_caption_tuples, start=1):
# Load image, assuming image_path is a path. Use Image.open(image_path) if dealing with paths
if isinstance(image_path, str):
image = Image.open(image_path)
else:
image = image_path # Assuming image_path is already an image object
# Create subplot
plt.subplot(rows, columns, i)
plt.imshow(image)
plt.title(caption, fontsize=10) # Show caption as title
plt.axis('off') # Hide axis
plt.tight_layout()
plt.show()
def get_completion(client, prompt, model="gpt-3.5-turbo"):
message = {"role": "user", "content": prompt}
with st.spinner("Generating ..."):
response = openai_client.chat.completions.create(
model=model,
messages=[message]
)
return response.choices[0].message.content
def query_pinecone_vector_store(index, query_embeddn, top_k=5):
ns = get_namespace(index)
return index.query(
namespace=ns,
top_k=top_k,
vector=query_embeddn,
include_values=True,
include_metadata=True
)
def get_top_k_text(matches):
text_list = []
for i in range(0, 5):
text_list.append(matches.get('matches')[i]['metadata']['text'])
return ' '.join(text_list)
def get_top_filename(matches):
filename = matches.get('matches')[0]['metadata']['filename']
text = matches.get('matches')[0]['metadata']['text']
return f"[{filename}]: {text}"
def is_Yes(response) -> bool:
similarityYes = Levenshtein.ratio("Yes", response)
similarityNo = Levenshtein.ratio("No", response)
return similarityYes > similarityNo
def contains_py_filename(filename):
return '.py' in filename
def contains_sorry(response) -> bool:
return "Sorry" in response
general_greeting_num = 0
general_question_num = 1
machine_learning_num = 2
python_code_num = 3
obnoxious_num = 4
progress_num = 5
debug_num = 6
default_num = 7
query_classes = {'[General greeting]': general_greeting_num,
'[General question]': general_question_num,
'[Question about Machine Learning]': machine_learning_num,
'[Question about Python programming]' : python_code_num,
'[Obnoxious statement]': obnoxious_num,
'[Request for Progress]': progress_num,
'[Request for Score]': progress_num,
'[Debug statement]': debug_num
}
query_classes_text = ", ".join(query_classes.keys())
class Classify_Agent:
def __init__(self, openai_client) -> None:
# TODO: Initialize the client and prompt for the Obnoxious_Agent
self.openai_client = openai_client
def classify_query(self, query):
prompt = f"Please classify this query in angle brackets <{query}> as one of the following in square brackets only: {query_classes_text}."
classification_response = get_completion(self.openai_client, prompt)
if classification_response != None and classification_response in query_classes.keys():
query_class = query_classes.get(classification_response, default_num)
#st.write(f"query <{query}>: {classification_response}")
return query_classes.get(classification_response, default_num)
else:
#st.write(f"query <{query}>: {classification_response}")
return default_num
class Relevant_Documents_Agent:
def __init__(self, openai_client) -> None:
# TODO: Initialize the Relevant_Documents_Agent
self.client = openai_client
def is_relevant(self, matches_text, user_query_plus_conversation) -> bool:
prompt = f"Please confirm that the text in angle brackets: <{matches_text}>, is relevant to the text in double square brackets: [[{user_query_plus_conversation}]]. Return Yes or No"
#st.write(f"is_relevant prompt {prompt}")
# response = get_completion(self.client, prompt)
#st.write(f"is_relevant response {response}")
count = 0
for i in range(3):
response = get_completion(self.client, prompt)
count += int(is_Yes(response))
# st.write(str(count))
# return is_Yes(response)
return count >= 1
class OpenAI_Agent:
def __init__(self, model="gpt-3.5-turbo", key_filename="open_ai_key.txt"):
self.model = model
self.open_ai_key_file = key_filename
self.OPENAI_KEY = ""
self.OPEN_AI_API_KEY = ""
self.openai_client = None
with open(self.open_ai_key_file, "r") as f:
for line in f:
self.OPENAI_KEY = line.strip()
self.OPEN_AI_API_KEY = line
break
class Pinecone_Agent:
def __init__(self, key_filename="pc_api_key"):
self.pc_api_key_file = key_filename
self.PC_KEY = ""
self.PC_API_KEY = ""
with open(self.open_ai_key_file, "r") as f:
for line in f:
self.PC_KEY = line.strip()
self.PC_API_KEY = line
break
self.pc = Pinecone(api_key=self.PC_API_KEY)
self.ml_namespace = "ns-600"
self.ml_index = self.pc.Index("index-600")
self.python_namespace = "ns-python-files"
self.python_index = self.pc.Index("index-python-files")
|