File size: 12,364 Bytes
6e58dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# %%writefile app.py
from setup_code import *  # This imports everything from setup_code.py

general_greeting_num = 0
general_question_num = 1
machine_learning_num = 2
python_code_num = 3
obnoxious_num = 4
default_num = 5

query_classes = {'[General greeting]': general_greeting_num,
           '[General question]': general_question_num,
           '[Question about Machine Learning]': machine_learning_num,
           '[Question about Python code]' : python_code_num,
           '[Obnoxious statement]': obnoxious_num
}

query_classes_text = ", ".join(query_classes.keys())

class Classify_Agent:
    def __init__(self, openai_client) -> None:
        # TODO: Initialize the client and prompt for the Obnoxious_Agent
        self.openai_client = openai_client

    def classify_query(self, query):
        prompt = f"Please classify this query in angle brackets <{query}> as one of the following in square brackets only: {query_classes_text}."
        classification_response = get_completion(self.openai_client, prompt)

        if classification_response != None and classification_response in query_classes.keys():
            query_class = query_classes.get(classification_response, default_num)
            # st.write(f"query <{query}>: {classification_response}")

            return query_classes.get(classification_response, default_num)
        else:
            # st.write(f"query <{query}>: {classification_response}")
            return default_num

class Relevant_Documents_Agent:
    def __init__(self, openai_client) -> None:
        # TODO: Initialize the Relevant_Documents_Agent
        self.client = openai_client

    def get_relevance(self, conversation) -> str:
        pass

    def get_relevant_docs(self, conversation, docs) -> str: # uses Query Agent to get relevant docs
        pass

    def is_relevant(self, matches_text, user_query_plus_conversation) -> bool:
      prompt = f"Please confirm that the text in angle brackets: <{matches_text}>, is relevant to the text in double square brackets: [[{user_query_plus_conversation}]]. Return Yes or No"
      response = get_completion(self.client, prompt)

      return is_Yes(response)

class Query_Agent:
    def __init__(self, pinecone_index, pinecone_index_python, openai_client, embeddings) -> None:
        # TODO: Initialize the Query_Agent agent
        self.pinecone_index = pinecone_index
        self.pinecone_index_python = pinecone_index_python
        self.openai_client = openai_client
        self.embeddings = embeddings

    def get_openai_embedding(self, text, model="text-embedding-ada-002"):
        text = text.replace("\n", " ")
        return self.openai_client.embeddings.create(input=[text], model=model).data[0].embedding

    def query_vector_store(self, query, index=None, k=5) -> str:
        if index == None:
            index = self.pinecone_index

        query_embedding = self.get_openai_embedding(query)

        def get_namespace(index):
            stat = index.describe_index_stats()
            stat_dict_key = stat['namespaces'].keys()

            stat_dict_key_list = list(stat_dict_key)
            first_key = stat_dict_key_list[0]

            return first_key

        ns = get_namespace(index)

        matches_text = get_top_k_text(index.query(
            namespace=ns,
            top_k=k,
            vector=query_embedding,
            include_values=True,
            include_metadata=True
            )
        )
        return matches_text

class Answering_Agent:
    def __init__(self, openai_client) -> None:
        # TODO: Initialize the Answering_Agent
        self.client = openai_client

    def generate_response(self, query, docs, conv_history, selected_mode):
        # TODO: Generate a response to the user's query
        prompt_for_gpt = f"Based on this text in angle brackets: <{docs}>, please summarize a response to this query: {query} in the context of this conversation: {conv_history}. Please use language appropriate for a {selected_mode}."
        return get_completion(self.client, prompt_for_gpt)

    def generate_image(self, text):
        caption_prompt = f"Based on this text, repeated here in double square brackets for your reference: [[{text}]], please generate a simple caption that I can use with dall-e to generate an instructional image."
        caption_text = get_completion(self.client, caption_prompt)
        #st.write(caption_text)
        image = Head_Agent.text_to_image(self.client, caption_text)
        return image

class Head_Agent:
    def __init__(self, openai_key, pinecone_key) -> None:
        # TODO: Initialize the Head_Agent
        self.openai_key = openai_key
        self.pinecone_key = pinecone_key
        self.selected_mode = ""

        self.openai_client = OpenAI(api_key=self.openai_key)
        self.pc = Pinecone(api_key=self.pinecone_key)
        self.pinecone_index = self.pc.Index("index-600")
        self.pinecone_index_python = self.pc.Index("index-py-files")

        self.setup_sub_agents()

    def setup_sub_agents(self):
        # TODO: Setup the sub-agents
        self.classify_agent = Classify_Agent(self.openai_client)
        self.query_agent = Query_Agent(self.pinecone_index, self.pinecone_index_python, self.openai_client, None)  # Pass embeddings if needed
        self.answering_agent = Answering_Agent(self.openai_client)
        self.relevant_documents_agent = Relevant_Documents_Agent(self.openai_client)

    def process_query_response(self, user_query, query_topic):
        # Retrieve the history related to the query_topic
        conversation = []
        index = self.pinecone_index
        if query_topic == "ml":
            conversation = Head_Agent.get_history_about('ml')
        elif query_topic == 'python':
            conversation = Head_Agent.get_history_about('python')
            index = self.pinecone_index_python

        # get matches from Query_Agent, which uses Pinecone
        user_query_plus_conversation = f"The current query is: {user_query}"
        if len(conversation) > 0:
            conversation_text = "\n".join(conversation)
            user_query_plus_conversation += f'The current conversation is: {conversation_text}'
       
        # st.write(user_query_plus_conversation)
        matches_text = self.query_agent.query_vector_store(user_query_plus_conversation, index)

        if self.relevant_documents_agent.is_relevant(matches_text, user_query_plus_conversation):
            #maybe here we can ask GPT to make up an answer if there is no match
            response = self.answering_agent.generate_response(user_query, matches_text, conversation, self.selected_mode)
        else:
            response = "Sorry, I don't have relevant information to answer that query."

        return response

    @staticmethod
    def get_conversation():
        # ... (code for getting conversation history)
        return Head_Agent.get_history_about()

    @staticmethod
    def get_history_about(topic=None):
        history = []

        for message in st.session_state.messages:
            role = message["role"]
            content = message["content"]

            if topic == None:
                if role == "user":
                    history.append(f"{content} ")
            else:
                if message["topic"] == topic:
                    history.append(f"{content} ")

        # st.write(f"user history in get_conversation is {history}")

        if history != None:
            history = history[-2:]

        return history

    @staticmethod
    def text_to_image(openai_client, text):
        response = openai_client.images.generate(
            model="dall-e-3",
            prompt = text,
            n=1,
            size="1024x1024"
        )
        image_url = response.data[0].url
        with urllib.request.urlopen(image_url) as image_url:
            img = Image.open(BytesIO(image_url.read()))

        return img

    def main_loop_1(self):
        # TODO: Run the main loop for the chatbot
        st.title("Mini Project 2: Streamlit Chatbot")

        # Check for existing session state variables
        if "openai_model" not in st.session_state:
            # ... (initialize model)
            # st.session_state.openai_model = openai_client #'GPT-3.5-turbo'
            st.session_state.openai_model = 'gpt-3.5-turbo'

        if "messages" not in st.session_state:
            # ... (initialize messages)
            st.session_state.messages = []

        # Define the selection options
        modes = ['1st grade student', 'middle school student', 'high school student', 'college student', 'grad student']

        # Use st.selectbox to let the user select a mode
        self.selected_mode = st.selectbox("Select your education level:", modes)

        # Display existing chat messages
        # ... (code for displaying messages)
        for message in st.session_state.messages:
            if message["role"] == "assistant":
                with st.chat_message("assistant"):
                    st.write(message["content"])
                    if message['image'] != None:
                        st.image(message['image'])
            else:
                with st.chat_message("user"):
                    st.write(message["content"])

        # Wait for user input
        if user_query := st.chat_input("What would you like to chat about?"):
            # # ... (append user message to messages)

            # ... (display user message)
            with st.chat_message("user"):
                st.write(user_query)

            # Generate AI response
            with st.chat_message("assistant"):
                # ... (send request to OpenAI API)
                response = ""
                topic = None
                image = None
                hasImage = False

                # Get the current conversation with new user query to check for users' intension
                conversation = self.get_conversation()
                user_query_plus_conversation = f"The current query is: {user_query}. The current conversation is: {conversation}"
                classify_query = self.classify_agent.classify_query(user_query_plus_conversation)

                if classify_query == general_greeting_num:
                    response = "How can I assist you today?"
                elif classify_query == general_question_num:
                    response = "Please ask a question about Machine Learning or Python Code."
                elif classify_query == machine_learning_num:
                    # answering agent will 1. call query agent te get matches from pinecone, 2. verify the matches r relevant, 3. generate response
                    response = self.process_query_response(user_query, 'ml')

                    # answering agent will generate an image
                    if not contains_sorry(response):
                        image = self.answering_agent.generate_image(response)
                        hasImage = True
                        topic = "ml"

                elif classify_query == python_code_num:
                    response = self.process_query_response(user_query, 'python')
                    # answering agent will generate an image
                    if not contains_sorry(response):
                        image = self.answering_agent.generate_image(response)
                        hasImage = True
                        topic = "python"

                elif classify_query == obnoxious_num:
                    response = "Please dont be obnoxious."
                elif classify_query == default_num:
                    response = "I'm not sure how to respond to that."
                else:
                    response = "I'm not sure how to respond to that."

                # ... (get AI response and display it)
                st.write(response)
                if hasImage:
                    st.image(image)

                # Test moving append user_query down here:
                st.session_state.messages.append({"role": "user", "content": user_query, "topic": topic, "image": None})
                # ... (append AI response to messages)
                st.session_state.messages.append({"role": "assistant", "content": response, "topic": topic, "image": image})

if __name__ == "__main__":
    head_agent = Head_Agent(OPENAI_KEY, pc_apikey)
    head_agent.main_loop_1()