Spaces:
Sleeping
Sleeping
File size: 12,364 Bytes
6e58dd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# %%writefile app.py
from setup_code import * # This imports everything from setup_code.py
general_greeting_num = 0
general_question_num = 1
machine_learning_num = 2
python_code_num = 3
obnoxious_num = 4
default_num = 5
query_classes = {'[General greeting]': general_greeting_num,
'[General question]': general_question_num,
'[Question about Machine Learning]': machine_learning_num,
'[Question about Python code]' : python_code_num,
'[Obnoxious statement]': obnoxious_num
}
query_classes_text = ", ".join(query_classes.keys())
class Classify_Agent:
def __init__(self, openai_client) -> None:
# TODO: Initialize the client and prompt for the Obnoxious_Agent
self.openai_client = openai_client
def classify_query(self, query):
prompt = f"Please classify this query in angle brackets <{query}> as one of the following in square brackets only: {query_classes_text}."
classification_response = get_completion(self.openai_client, prompt)
if classification_response != None and classification_response in query_classes.keys():
query_class = query_classes.get(classification_response, default_num)
# st.write(f"query <{query}>: {classification_response}")
return query_classes.get(classification_response, default_num)
else:
# st.write(f"query <{query}>: {classification_response}")
return default_num
class Relevant_Documents_Agent:
def __init__(self, openai_client) -> None:
# TODO: Initialize the Relevant_Documents_Agent
self.client = openai_client
def get_relevance(self, conversation) -> str:
pass
def get_relevant_docs(self, conversation, docs) -> str: # uses Query Agent to get relevant docs
pass
def is_relevant(self, matches_text, user_query_plus_conversation) -> bool:
prompt = f"Please confirm that the text in angle brackets: <{matches_text}>, is relevant to the text in double square brackets: [[{user_query_plus_conversation}]]. Return Yes or No"
response = get_completion(self.client, prompt)
return is_Yes(response)
class Query_Agent:
def __init__(self, pinecone_index, pinecone_index_python, openai_client, embeddings) -> None:
# TODO: Initialize the Query_Agent agent
self.pinecone_index = pinecone_index
self.pinecone_index_python = pinecone_index_python
self.openai_client = openai_client
self.embeddings = embeddings
def get_openai_embedding(self, text, model="text-embedding-ada-002"):
text = text.replace("\n", " ")
return self.openai_client.embeddings.create(input=[text], model=model).data[0].embedding
def query_vector_store(self, query, index=None, k=5) -> str:
if index == None:
index = self.pinecone_index
query_embedding = self.get_openai_embedding(query)
def get_namespace(index):
stat = index.describe_index_stats()
stat_dict_key = stat['namespaces'].keys()
stat_dict_key_list = list(stat_dict_key)
first_key = stat_dict_key_list[0]
return first_key
ns = get_namespace(index)
matches_text = get_top_k_text(index.query(
namespace=ns,
top_k=k,
vector=query_embedding,
include_values=True,
include_metadata=True
)
)
return matches_text
class Answering_Agent:
def __init__(self, openai_client) -> None:
# TODO: Initialize the Answering_Agent
self.client = openai_client
def generate_response(self, query, docs, conv_history, selected_mode):
# TODO: Generate a response to the user's query
prompt_for_gpt = f"Based on this text in angle brackets: <{docs}>, please summarize a response to this query: {query} in the context of this conversation: {conv_history}. Please use language appropriate for a {selected_mode}."
return get_completion(self.client, prompt_for_gpt)
def generate_image(self, text):
caption_prompt = f"Based on this text, repeated here in double square brackets for your reference: [[{text}]], please generate a simple caption that I can use with dall-e to generate an instructional image."
caption_text = get_completion(self.client, caption_prompt)
#st.write(caption_text)
image = Head_Agent.text_to_image(self.client, caption_text)
return image
class Head_Agent:
def __init__(self, openai_key, pinecone_key) -> None:
# TODO: Initialize the Head_Agent
self.openai_key = openai_key
self.pinecone_key = pinecone_key
self.selected_mode = ""
self.openai_client = OpenAI(api_key=self.openai_key)
self.pc = Pinecone(api_key=self.pinecone_key)
self.pinecone_index = self.pc.Index("index-600")
self.pinecone_index_python = self.pc.Index("index-py-files")
self.setup_sub_agents()
def setup_sub_agents(self):
# TODO: Setup the sub-agents
self.classify_agent = Classify_Agent(self.openai_client)
self.query_agent = Query_Agent(self.pinecone_index, self.pinecone_index_python, self.openai_client, None) # Pass embeddings if needed
self.answering_agent = Answering_Agent(self.openai_client)
self.relevant_documents_agent = Relevant_Documents_Agent(self.openai_client)
def process_query_response(self, user_query, query_topic):
# Retrieve the history related to the query_topic
conversation = []
index = self.pinecone_index
if query_topic == "ml":
conversation = Head_Agent.get_history_about('ml')
elif query_topic == 'python':
conversation = Head_Agent.get_history_about('python')
index = self.pinecone_index_python
# get matches from Query_Agent, which uses Pinecone
user_query_plus_conversation = f"The current query is: {user_query}"
if len(conversation) > 0:
conversation_text = "\n".join(conversation)
user_query_plus_conversation += f'The current conversation is: {conversation_text}'
# st.write(user_query_plus_conversation)
matches_text = self.query_agent.query_vector_store(user_query_plus_conversation, index)
if self.relevant_documents_agent.is_relevant(matches_text, user_query_plus_conversation):
#maybe here we can ask GPT to make up an answer if there is no match
response = self.answering_agent.generate_response(user_query, matches_text, conversation, self.selected_mode)
else:
response = "Sorry, I don't have relevant information to answer that query."
return response
@staticmethod
def get_conversation():
# ... (code for getting conversation history)
return Head_Agent.get_history_about()
@staticmethod
def get_history_about(topic=None):
history = []
for message in st.session_state.messages:
role = message["role"]
content = message["content"]
if topic == None:
if role == "user":
history.append(f"{content} ")
else:
if message["topic"] == topic:
history.append(f"{content} ")
# st.write(f"user history in get_conversation is {history}")
if history != None:
history = history[-2:]
return history
@staticmethod
def text_to_image(openai_client, text):
response = openai_client.images.generate(
model="dall-e-3",
prompt = text,
n=1,
size="1024x1024"
)
image_url = response.data[0].url
with urllib.request.urlopen(image_url) as image_url:
img = Image.open(BytesIO(image_url.read()))
return img
def main_loop_1(self):
# TODO: Run the main loop for the chatbot
st.title("Mini Project 2: Streamlit Chatbot")
# Check for existing session state variables
if "openai_model" not in st.session_state:
# ... (initialize model)
# st.session_state.openai_model = openai_client #'GPT-3.5-turbo'
st.session_state.openai_model = 'gpt-3.5-turbo'
if "messages" not in st.session_state:
# ... (initialize messages)
st.session_state.messages = []
# Define the selection options
modes = ['1st grade student', 'middle school student', 'high school student', 'college student', 'grad student']
# Use st.selectbox to let the user select a mode
self.selected_mode = st.selectbox("Select your education level:", modes)
# Display existing chat messages
# ... (code for displaying messages)
for message in st.session_state.messages:
if message["role"] == "assistant":
with st.chat_message("assistant"):
st.write(message["content"])
if message['image'] != None:
st.image(message['image'])
else:
with st.chat_message("user"):
st.write(message["content"])
# Wait for user input
if user_query := st.chat_input("What would you like to chat about?"):
# # ... (append user message to messages)
# ... (display user message)
with st.chat_message("user"):
st.write(user_query)
# Generate AI response
with st.chat_message("assistant"):
# ... (send request to OpenAI API)
response = ""
topic = None
image = None
hasImage = False
# Get the current conversation with new user query to check for users' intension
conversation = self.get_conversation()
user_query_plus_conversation = f"The current query is: {user_query}. The current conversation is: {conversation}"
classify_query = self.classify_agent.classify_query(user_query_plus_conversation)
if classify_query == general_greeting_num:
response = "How can I assist you today?"
elif classify_query == general_question_num:
response = "Please ask a question about Machine Learning or Python Code."
elif classify_query == machine_learning_num:
# answering agent will 1. call query agent te get matches from pinecone, 2. verify the matches r relevant, 3. generate response
response = self.process_query_response(user_query, 'ml')
# answering agent will generate an image
if not contains_sorry(response):
image = self.answering_agent.generate_image(response)
hasImage = True
topic = "ml"
elif classify_query == python_code_num:
response = self.process_query_response(user_query, 'python')
# answering agent will generate an image
if not contains_sorry(response):
image = self.answering_agent.generate_image(response)
hasImage = True
topic = "python"
elif classify_query == obnoxious_num:
response = "Please dont be obnoxious."
elif classify_query == default_num:
response = "I'm not sure how to respond to that."
else:
response = "I'm not sure how to respond to that."
# ... (get AI response and display it)
st.write(response)
if hasImage:
st.image(image)
# Test moving append user_query down here:
st.session_state.messages.append({"role": "user", "content": user_query, "topic": topic, "image": None})
# ... (append AI response to messages)
st.session_state.messages.append({"role": "assistant", "content": response, "topic": topic, "image": image})
if __name__ == "__main__":
head_agent = Head_Agent(OPENAI_KEY, pc_apikey)
head_agent.main_loop_1() |