Spaces:
Sleeping
Sleeping
Create setup_code.py
Browse files- setup_code.py +83 -0
setup_code.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_openai import OpenAIEmbeddings
|
2 |
+
from langchain.vectorstores import Pinecone
|
3 |
+
from pinecone import Pinecone, ServerlessSpec
|
4 |
+
from tqdm.notebook import tqdm
|
5 |
+
import langchain
|
6 |
+
import openai
|
7 |
+
from openai import OpenAI
|
8 |
+
import string
|
9 |
+
import pandas as pd
|
10 |
+
import urllib.request
|
11 |
+
from io import BytesIO
|
12 |
+
from PIL import Image
|
13 |
+
import pillow_heif
|
14 |
+
from itertools import islice
|
15 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
16 |
+
import gc
|
17 |
+
import ast
|
18 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
19 |
+
from sentence_transformers import SentenceTransformer
|
20 |
+
import streamlit as st
|
21 |
+
import re
|
22 |
+
import Levenshtein
|
23 |
+
|
24 |
+
# from google.colab import drive
|
25 |
+
# from dotenv import load_dotenv, find_dotenv
|
26 |
+
import os
|
27 |
+
|
28 |
+
# open_ai_key_file = "/content/gdrive/MyDrive/LLM_Winter2024/open_ai_key.txt" # Your OPEN AI Key in this file
|
29 |
+
|
30 |
+
# with open(open_ai_key_file, "r") as f:
|
31 |
+
#for line in f:
|
32 |
+
#OPENAI_KEY = line.strip()
|
33 |
+
#OPEN_AI_API_KEY = line
|
34 |
+
#break
|
35 |
+
|
36 |
+
#_ = load_dotenv(find_dotenv())
|
37 |
+
|
38 |
+
# GETTING OpenAI and Pinecone api key
|
39 |
+
openai.api_key = st.secrets['OPENAI_KEY']
|
40 |
+
pc_apikey = st.secrets['pc_apikey']
|
41 |
+
|
42 |
+
openai_client = OpenAI(api_key=openai.api_key)
|
43 |
+
|
44 |
+
# Function to get the embeddings of the text using OpenAI text-embedding-ada-002 model
|
45 |
+
def get_openai_embedding(openai_client, text, model="text-embedding-ada-002"):
|
46 |
+
text = text.replace("\n", " ")
|
47 |
+
return openai_client.embeddings.create(input = [text], model=model).data[0].embedding
|
48 |
+
|
49 |
+
def get_completion(client, prompt, model="gpt-3.5-turbo"):
|
50 |
+
message = {"role": "user", "content": prompt}
|
51 |
+
response = openai_client.chat.completions.create(
|
52 |
+
model="gpt-4",
|
53 |
+
messages=[message]
|
54 |
+
)
|
55 |
+
return response.choices[0].message.content
|
56 |
+
|
57 |
+
def query_pinecone_vector_store(index, query_embeddn, top_k=5):
|
58 |
+
ns = get_namespace(index)
|
59 |
+
|
60 |
+
return index.query(
|
61 |
+
namespace=ns,
|
62 |
+
top_k=top_k,
|
63 |
+
vector=query_embeddn,
|
64 |
+
include_values=True,
|
65 |
+
include_metadata=True
|
66 |
+
)
|
67 |
+
|
68 |
+
def get_top_k_text(matches):
|
69 |
+
text_list = []
|
70 |
+
|
71 |
+
for i in range(0, 5):
|
72 |
+
text_list.append(matches.get('matches')[i]['metadata']['text'])
|
73 |
+
|
74 |
+
return ' '.join(text_list)
|
75 |
+
|
76 |
+
def is_Yes(response) -> bool:
|
77 |
+
similarityYes = Levenshtein.ratio("Yes", response)
|
78 |
+
similarityNo = Levenshtein.ratio("No", response)
|
79 |
+
|
80 |
+
return similarityYes > similarityNo
|
81 |
+
|
82 |
+
def contains_sorry(response) -> bool:
|
83 |
+
return "Sorry" in response
|