Spaces:
Sleeping
Sleeping
File size: 17,119 Bytes
1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 6007e4c 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 89f6983 1f39cf9 2335a8f 89f6983 2335a8f 1f39cf9 2335a8f 89f6983 2335a8f 89f6983 2335a8f 1f39cf9 89f6983 2335a8f 89f6983 2335a8f 1f39cf9 89f6983 2335a8f 1f39cf9 2335a8f 89f6983 2335a8f 1f39cf9 89f6983 2335a8f 1f39cf9 89f6983 1f39cf9 89f6983 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import torch
import models
import utils
from models import pipelines, sam
from utils import parse, guidance, attn, latents, vis
from shared import (
model_dict,
sam_model_dict,
DEFAULT_SO_NEGATIVE_PROMPT,
DEFAULT_OVERALL_NEGATIVE_PROMPT,
)
verbose = False
vae, tokenizer, text_encoder, unet, dtype = (
model_dict.vae,
model_dict.tokenizer,
model_dict.text_encoder,
model_dict.unet,
model_dict.dtype,
)
model_dict.update(sam_model_dict)
# Hyperparams
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
H, W = height // 8, width // 8 # size of the latent
guidance_scale = 7.5 # Scale for classifier-free guidance
# batch size that is not 1 is not supported
overall_batch_size = 1
# semantic guidance kwargs (single object)
guidance_attn_keys = pipelines.DEFAULT_GUIDANCE_ATTN_KEYS
# discourage masks with confidence below
discourage_mask_below_confidence = 0.85
# discourage masks with iou (with coarse binarized attention mask) below
discourage_mask_below_coarse_iou = 0.25
# This is controls the foreground variations
fg_blending_ratio = 0.1
run_ind = None
def generate_single_object_with_box(
prompt,
box,
phrase,
word,
input_latents,
input_embeddings,
semantic_guidance_kwargs,
obj_attn_key,
saved_cross_attn_keys,
sam_refine_kwargs,
num_inference_steps,
gligen_scheduled_sampling_beta=0.3,
verbose=False,
visualize=False,
**kwargs,
):
bboxes, phrases, words = [box], [phrase], [word]
if verbose:
print(f"Getting token map (prompt: {prompt})")
object_positions, word_token_indices = guidance.get_phrase_indices(
tokenizer=tokenizer,
prompt=prompt,
phrases=phrases,
words=words,
return_word_token_indices=True,
# Since the prompt for single object is from background prompt + object name, we will not have the case of not found
add_suffix_if_not_found=False,
verbose=verbose,
)
# phrases only has one item, so we select the first item in word_token_indices
word_token_index = word_token_indices[0]
if verbose:
print("word_token_index:", word_token_index)
# `offload_guidance_cross_attn_to_cpu` will greatly slow down generation
(
latents,
single_object_images,
saved_attns,
single_object_pil_images_box_ann,
latents_all,
) = pipelines.generate_gligen(
model_dict,
input_latents,
input_embeddings,
num_inference_steps,
bboxes,
phrases,
gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
guidance_scale=guidance_scale,
return_saved_cross_attn=True,
semantic_guidance=True,
semantic_guidance_bboxes=bboxes,
semantic_guidance_object_positions=object_positions,
semantic_guidance_kwargs=semantic_guidance_kwargs,
saved_cross_attn_keys=[obj_attn_key, *saved_cross_attn_keys],
return_cond_ca_only=True,
return_token_ca_only=word_token_index,
offload_cross_attn_to_cpu=False,
return_box_vis=True,
save_all_latents=True,
dynamic_num_inference_steps=True,
**kwargs,
)
# `saved_cross_attn_keys` kwargs may have duplicates
utils.free_memory()
single_object_pil_image_box_ann = single_object_pil_images_box_ann[0]
if visualize:
print("Single object image")
vis.display(single_object_pil_image_box_ann)
mask_selected, conf_score_selected = sam.sam_refine_box(
sam_input_image=single_object_images[0],
box=box,
model_dict=model_dict,
verbose=verbose,
**sam_refine_kwargs,
)
mask_selected_tensor = torch.tensor(mask_selected)
if verbose:
vis.visualize(mask_selected, "Mask (selected) after resize")
# This is only for visualizations
masked_latents = latents_all * mask_selected_tensor[None, None, None, ...]
vis.visualize_masked_latents(
latents_all, masked_latents, timestep_T=False, timestep_0=True
)
return (
latents_all,
mask_selected_tensor,
saved_attns,
single_object_pil_image_box_ann,
)
def get_masked_latents_all_list(
so_prompt_phrase_word_box_list,
input_latents_list,
so_input_embeddings,
verbose=False,
**kwargs,
):
latents_all_list, mask_tensor_list, saved_attns_list, so_img_list = [], [], [], []
if not so_prompt_phrase_word_box_list:
return latents_all_list, mask_tensor_list, saved_attns_list
so_uncond_embeddings, so_cond_embeddings = so_input_embeddings
for idx, ((prompt, phrase, word, box), input_latents) in enumerate(
zip(so_prompt_phrase_word_box_list, input_latents_list)
):
so_current_cond_embeddings = so_cond_embeddings[idx : idx + 1]
so_current_text_embeddings = torch.cat(
[so_uncond_embeddings, so_current_cond_embeddings], dim=0
)
so_current_input_embeddings = (
so_current_text_embeddings,
so_uncond_embeddings,
so_current_cond_embeddings,
)
latents_all, mask_tensor, saved_attns, so_img = generate_single_object_with_box(
prompt,
box,
phrase,
word,
input_latents,
input_embeddings=so_current_input_embeddings,
verbose=verbose,
**kwargs,
)
latents_all_list.append(latents_all)
mask_tensor_list.append(mask_tensor)
saved_attns_list.append(saved_attns)
so_img_list.append(so_img)
return latents_all_list, mask_tensor_list, saved_attns_list, so_img_list
# Note: need to keep the supervision, especially the box corrdinates, corresponds to each other in single object and overall.
def run(
spec,
bg_seed=1,
overall_prompt_override="",
fg_seed_start=20,
frozen_step_ratio=0.4,
num_inference_steps=20,
loss_scale=20,
loss_threshold=5.0,
max_iter=[2] * 5 + [1] * 10,
max_index_step=15,
overall_loss_scale=20,
overall_loss_threshold=5.0,
overall_max_iter=[4] * 5 + [3] * 5 + [2] * 5 + [2] * 5 + [1] * 10,
overall_max_index_step=30,
so_gligen_scheduled_sampling_beta=0.4,
overall_gligen_scheduled_sampling_beta=0.4,
ref_ca_loss_weight=0.5,
so_center_box=False,
fg_blending_ratio=0.1,
scheduler_key="dpm_scheduler",
so_negative_prompt=DEFAULT_SO_NEGATIVE_PROMPT,
overall_negative_prompt=DEFAULT_OVERALL_NEGATIVE_PROMPT,
so_horizontal_center_only=True,
align_with_overall_bboxes=False,
horizontal_shift_only=True,
use_fast_schedule=True,
# Transfer the cross-attention from single object generation (with ref_ca_saved_attns)
# Use reference cross attention to guide the cross attention in the overall generation
use_ref_ca=True,
use_autocast=False,
):
"""
so_center_box: using centered box in single object generation
so_horizontal_center_only: move to the center horizontally only
align_with_overall_bboxes: Align the center of the mask, latents, and cross-attention with the center of the box in overall bboxes
horizontal_shift_only: only shift horizontally for the alignment of mask, latents, and cross-attention
"""
frozen_step_ratio = min(max(frozen_step_ratio, 0.0), 1.0)
frozen_steps = int(num_inference_steps * frozen_step_ratio)
print(
"generation:",
spec,
bg_seed,
fg_seed_start,
frozen_step_ratio,
so_gligen_scheduled_sampling_beta,
overall_gligen_scheduled_sampling_beta,
overall_max_index_step,
)
(
so_prompt_phrase_word_box_list,
overall_prompt,
overall_phrases_words_bboxes,
) = parse.convert_spec(spec, height, width, verbose=verbose)
if overall_prompt_override and overall_prompt_override.strip():
overall_prompt = overall_prompt_override.strip()
overall_phrases, overall_words, overall_bboxes = (
[item[0] for item in overall_phrases_words_bboxes],
[item[1] for item in overall_phrases_words_bboxes],
[item[2] for item in overall_phrases_words_bboxes],
)
# The so box is centered but the overall boxes are not (since we need to place to the right place).
if so_center_box:
so_prompt_phrase_word_box_list = [
(
prompt,
phrase,
word,
utils.get_centered_box(
bbox, horizontal_center_only=so_horizontal_center_only
),
)
for prompt, phrase, word, bbox in so_prompt_phrase_word_box_list
]
if verbose:
print(
f"centered so_prompt_phrase_word_box_list: {so_prompt_phrase_word_box_list}"
)
so_boxes = [item[-1] for item in so_prompt_phrase_word_box_list]
so_negative_prompt = DEFAULT_SO_NEGATIVE_PROMPT
overall_negative_prompt = DEFAULT_OVERALL_NEGATIVE_PROMPT
if "extra_neg_prompt" in spec and spec["extra_neg_prompt"]:
so_negative_prompt = spec["extra_neg_prompt"] + ", " + so_negative_prompt
overall_negative_prompt = (
spec["extra_neg_prompt"] + ", " + overall_negative_prompt
)
semantic_guidance_kwargs = dict(
loss_scale=loss_scale,
loss_threshold=loss_threshold,
max_iter=max_iter,
max_index_step=max_index_step,
use_ratio_based_loss=False,
guidance_attn_keys=guidance_attn_keys,
verbose=True,
)
sam_refine_kwargs = dict(
discourage_mask_below_confidence=discourage_mask_below_confidence,
discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou,
height=height,
width=width,
H=H,
W=W,
)
if verbose:
vis.visualize_bboxes(
bboxes=[item[-1] for item in so_prompt_phrase_word_box_list], H=H, W=W
)
# Note that so and overall use different negative prompts
with torch.autocast("cuda", enabled=use_autocast):
so_prompts = [item[0] for item in so_prompt_phrase_word_box_list]
if so_prompts:
so_input_embeddings = models.encode_prompts(
prompts=so_prompts,
tokenizer=tokenizer,
text_encoder=text_encoder,
negative_prompt=so_negative_prompt,
one_uncond_input_only=True,
)
else:
so_input_embeddings = []
input_latents_list, latents_bg = latents.get_input_latents_list(
model_dict,
bg_seed=bg_seed,
fg_seed_start=fg_seed_start,
so_boxes=so_boxes,
fg_blending_ratio=fg_blending_ratio,
height=height,
width=width,
verbose=False,
)
if use_fast_schedule:
fast_after_steps = max(frozen_steps, overall_max_index_step) if use_ref_ca else frozen_steps
else:
fast_after_steps = None
if use_ref_ca or frozen_steps > 0:
(
latents_all_list,
mask_tensor_list,
saved_attns_list,
so_img_list,
) = get_masked_latents_all_list(
so_prompt_phrase_word_box_list,
input_latents_list,
gligen_scheduled_sampling_beta=so_gligen_scheduled_sampling_beta,
semantic_guidance_kwargs=semantic_guidance_kwargs,
obj_attn_key=("down", 2, 1, 0),
saved_cross_attn_keys=guidance_attn_keys if use_ref_ca else [],
sam_refine_kwargs=sam_refine_kwargs,
so_input_embeddings=so_input_embeddings,
num_inference_steps=num_inference_steps,
scheduler_key=scheduler_key,
verbose=verbose,
fast_after_steps=fast_after_steps,
fast_rate=2,
)
else:
# No per-box guidance
(latents_all_list, mask_tensor_list, saved_attns_list, so_img_list) = [], [], [], []
(
composed_latents,
foreground_indices,
offset_list,
) = latents.compose_latents_with_alignment(
model_dict,
latents_all_list,
mask_tensor_list,
num_inference_steps,
overall_batch_size,
height,
width,
latents_bg=latents_bg,
align_with_overall_bboxes=align_with_overall_bboxes,
overall_bboxes=overall_bboxes,
horizontal_shift_only=horizontal_shift_only,
use_fast_schedule=use_fast_schedule,
fast_after_steps=fast_after_steps,
)
# NOTE: need to ensure overall embeddings are generated after the update of overall prompt
(
overall_object_positions,
overall_word_token_indices,
overall_prompt
) = guidance.get_phrase_indices(
tokenizer=tokenizer,
prompt=overall_prompt,
phrases=overall_phrases,
words=overall_words,
verbose=verbose,
return_word_token_indices=True,
add_suffix_if_not_found=True
)
overall_input_embeddings = models.encode_prompts(
prompts=[overall_prompt],
tokenizer=tokenizer,
negative_prompt=overall_negative_prompt,
text_encoder=text_encoder,
)
if use_ref_ca:
# ref_ca_saved_attns has the same hierarchy as bboxes
ref_ca_saved_attns = []
flattened_box_idx = 0
for bboxes in overall_bboxes:
# bboxes: correspond to a phrase
ref_ca_current_phrase_saved_attns = []
for bbox in bboxes:
# each individual bbox
saved_attns = saved_attns_list[flattened_box_idx]
if align_with_overall_bboxes:
offset = offset_list[flattened_box_idx]
saved_attns = attn.shift_saved_attns(
saved_attns,
offset,
guidance_attn_keys=guidance_attn_keys,
horizontal_shift_only=horizontal_shift_only,
)
ref_ca_current_phrase_saved_attns.append(saved_attns)
flattened_box_idx += 1
ref_ca_saved_attns.append(ref_ca_current_phrase_saved_attns)
overall_bboxes_flattened, overall_phrases_flattened = [], []
for overall_bboxes_item, overall_phrase in zip(overall_bboxes, overall_phrases):
for overall_bbox in overall_bboxes_item:
overall_bboxes_flattened.append(overall_bbox)
overall_phrases_flattened.append(overall_phrase)
# This is currently not-shared with the single object one.
overall_semantic_guidance_kwargs = dict(
loss_scale=overall_loss_scale,
loss_threshold=overall_loss_threshold,
max_iter=overall_max_iter,
max_index_step=overall_max_index_step,
# ref_ca comes from the attention map of the word token of the phrase in single object generation, so we apply it only to the word token of the phrase in overall generation.
ref_ca_word_token_only=True,
# If a word is not provided, we use the last token.
ref_ca_last_token_only=True,
ref_ca_saved_attns=ref_ca_saved_attns if use_ref_ca else None,
word_token_indices=overall_word_token_indices,
guidance_attn_keys=guidance_attn_keys,
ref_ca_loss_weight=ref_ca_loss_weight,
use_ratio_based_loss=False,
verbose=True,
)
# Generate with composed latents
# Foreground should be frozen
frozen_mask = foreground_indices != 0
_, images = pipelines.generate_gligen(
model_dict,
composed_latents,
overall_input_embeddings,
num_inference_steps,
overall_bboxes_flattened,
overall_phrases_flattened,
guidance_scale=guidance_scale,
gligen_scheduled_sampling_beta=overall_gligen_scheduled_sampling_beta,
semantic_guidance=True,
semantic_guidance_bboxes=overall_bboxes,
semantic_guidance_object_positions=overall_object_positions,
semantic_guidance_kwargs=overall_semantic_guidance_kwargs,
frozen_steps=frozen_steps,
frozen_mask=frozen_mask,
scheduler_key=scheduler_key,
)
print(
f"Generation with spatial guidance from input latents and first {frozen_steps} steps frozen (directly from the composed latents input)"
)
print("Generation from composed latents (with semantic guidance)")
utils.free_memory()
return images[0], so_img_list
|