Spaces:
Sleeping
Sleeping
import gc | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from models import torch_device | |
from transformers import SamModel, SamProcessor | |
import utils | |
import cv2 | |
from scipy import ndimage | |
def load_sam(): | |
sam_model = SamModel.from_pretrained("facebook/sam-vit-base").to(torch_device) | |
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base") | |
sam_model_dict = dict( | |
sam_model = sam_model, sam_processor = sam_processor | |
) | |
return sam_model_dict | |
# Not fully backward compatible with the previous implementation | |
# Reference: lmdv2/notebooks/gen_masked_latents_multi_object_ref_ca_loss_modular.ipynb | |
def sam(sam_model_dict, image, input_points=None, input_boxes=None, target_mask_shape=None, return_numpy=True): | |
"""target_mask_shape: (h, w)""" | |
sam_model, sam_processor = sam_model_dict['sam_model'], sam_model_dict['sam_processor'] | |
if input_boxes and isinstance(input_boxes[0], tuple): | |
# Convert tuple to list | |
input_boxes = [list(input_box) for input_box in input_boxes] | |
if input_boxes and input_boxes[0] and isinstance(input_boxes[0][0], tuple): | |
# Convert tuple to list | |
input_boxes = [[list(input_box) for input_box in input_boxes_item] for input_boxes_item in input_boxes] | |
with torch.no_grad(): | |
with torch.autocast(torch_device): | |
inputs = sam_processor(image, input_points=input_points, input_boxes=input_boxes, return_tensors="pt").to(torch_device) | |
outputs = sam_model(**inputs) | |
masks = sam_processor.image_processor.post_process_masks( | |
outputs.pred_masks.cpu().float(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu() | |
) | |
conf_scores = outputs.iou_scores.cpu().numpy()[0,0] | |
del inputs, outputs | |
gc.collect() | |
torch.cuda.empty_cache() | |
if return_numpy: | |
masks = [F.interpolate(masks_item.type(torch.float), target_mask_shape, mode='bilinear').type(torch.bool).numpy() for masks_item in masks] | |
else: | |
masks = [F.interpolate(masks_item.type(torch.float), target_mask_shape, mode='bilinear').type(torch.bool) for masks_item in masks] | |
return masks, conf_scores | |
def sam_point_input(sam_model_dict, image, input_points, **kwargs): | |
return sam(sam_model_dict, image, input_points=input_points, **kwargs) | |
def sam_box_input(sam_model_dict, image, input_boxes, **kwargs): | |
return sam(sam_model_dict, image, input_boxes=input_boxes, **kwargs) | |
def get_iou_with_resize(mask, masks, masks_shape): | |
masks = np.array([cv2.resize(mask.astype(np.uint8) * 255, masks_shape[::-1], cv2.INTER_LINEAR).astype(bool) for mask in masks]) | |
return utils.iou(mask, masks) | |
def select_mask(masks, conf_scores, coarse_ious=None, rule="largest_over_conf", discourage_mask_below_confidence=0.85, discourage_mask_below_coarse_iou=0.2, verbose=False): | |
"""masks: numpy bool array""" | |
mask_sizes = masks.sum(axis=(1, 2)) | |
# Another possible rule: iou with the attention mask | |
if rule == "largest_over_conf": | |
# Use the largest segmentation | |
# Discourage selecting masks with conf too low or coarse iou is too low | |
max_mask_size = np.max(mask_sizes) | |
if coarse_ious is not None: | |
scores = mask_sizes - (conf_scores < discourage_mask_below_confidence) * max_mask_size - (coarse_ious < discourage_mask_below_coarse_iou) * max_mask_size | |
else: | |
scores = mask_sizes - (conf_scores < discourage_mask_below_confidence) * max_mask_size | |
if verbose: | |
print(f"mask_sizes: {mask_sizes}, scores: {scores}") | |
else: | |
raise ValueError(f"Unknown rule: {rule}") | |
mask_id = np.argmax(scores) | |
mask = masks[mask_id] | |
selection_conf = conf_scores[mask_id] | |
if coarse_ious is not None: | |
selection_coarse_iou = coarse_ious[mask_id] | |
else: | |
selection_coarse_iou = None | |
if verbose: | |
# print(f"Confidences: {conf_scores}") | |
print(f"Selected a mask with confidence: {selection_conf}, coarse_iou: {selection_coarse_iou}") | |
if verbose: | |
plt.figure(figsize=(10, 8)) | |
# plt.suptitle("After SAM") | |
for ind in range(3): | |
plt.subplot(1, 3, ind+1) | |
# This is obtained before resize. | |
plt.title(f"Mask {ind}, score {scores[ind]}, conf {conf_scores[ind]:.2f}, iou {coarse_ious[ind] if coarse_ious is not None else None:.2f}") | |
plt.imshow(masks[ind]) | |
plt.tight_layout() | |
plt.show() | |
plt.close() | |
return mask, selection_conf | |
def preprocess_mask(token_attn_np_smooth, mask_th, n_erode_dilate_mask=0): | |
token_attn_np_smooth_normalized = token_attn_np_smooth - token_attn_np_smooth.min() | |
token_attn_np_smooth_normalized /= token_attn_np_smooth_normalized.max() | |
mask_thresholded = token_attn_np_smooth_normalized > mask_th | |
if n_erode_dilate_mask: | |
mask_thresholded = ndimage.binary_erosion(mask_thresholded, iterations=n_erode_dilate_mask) | |
mask_thresholded = ndimage.binary_dilation(mask_thresholded, iterations=n_erode_dilate_mask) | |
return mask_thresholded | |
# The overall pipeline to refine the attention mask | |
def sam_refine_attn(sam_input_image, token_attn_np, model_dict, height, width, H, W, use_box_input, gaussian_sigma, mask_th_for_box, n_erode_dilate_mask_for_box, mask_th_for_point, discourage_mask_below_confidence, discourage_mask_below_coarse_iou, verbose): | |
# token_attn_np is for visualizations | |
token_attn_np_smooth = ndimage.gaussian_filter(token_attn_np, sigma=gaussian_sigma) | |
# (w, h) | |
mask_size_scale = height // token_attn_np_smooth.shape[1], width // token_attn_np_smooth.shape[0] | |
if use_box_input: | |
# box input | |
mask_binary = preprocess_mask(token_attn_np_smooth, mask_th_for_box, n_erode_dilate_mask=n_erode_dilate_mask_for_box) | |
input_boxes = utils.binary_mask_to_box(mask_binary, w_scale=mask_size_scale[0], h_scale=mask_size_scale[1]) | |
input_boxes = [input_boxes] | |
masks, conf_scores = sam_box_input(model_dict, image=sam_input_image, input_boxes=input_boxes, target_mask_shape=(H, W)) | |
else: | |
# point input | |
mask_binary = preprocess_mask(token_attn_np_smooth, mask_th_for_point, n_erode_dilate_mask=0) | |
# Uses the max coordinate only | |
max_coord = np.unravel_index(token_attn_np_smooth.argmax(), token_attn_np_smooth.shape) | |
# print("max_coord:", max_coord) | |
input_points = [[[max_coord[1] * mask_size_scale[1], max_coord[0] * mask_size_scale[0]]]] | |
masks, conf_scores = sam_point_input(model_dict, image=sam_input_image, input_points=input_points, target_mask_shape=(H, W)) | |
if verbose: | |
plt.title("Coarse binary mask (for box for box input and for iou)") | |
plt.imshow(mask_binary) | |
plt.show() | |
coarse_ious = get_iou_with_resize(mask_binary, masks, masks_shape=mask_binary.shape) | |
mask_selected, conf_score_selected = select_mask(masks, conf_scores, coarse_ious=coarse_ious, | |
rule="largest_over_conf", | |
discourage_mask_below_confidence=discourage_mask_below_confidence, | |
discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou, | |
verbose=True) | |
return mask_selected, conf_score_selected | |
def sam_refine_box(sam_input_image, box, *args, **kwargs): | |
# One image with one box | |
sam_input_images, boxes = [sam_input_image], [[box]] | |
mask_selected_batched_list, conf_score_selected_batched_list = sam_refine_boxes(sam_input_images, boxes, *args, **kwargs) | |
return mask_selected_batched_list[0][0], conf_score_selected_batched_list[0][0] | |
def sam_refine_boxes(sam_input_images, boxes, model_dict, height, width, H, W, discourage_mask_below_confidence, discourage_mask_below_coarse_iou, verbose): | |
# (w, h) | |
input_boxes = [[utils.scale_proportion(box, H=height, W=width) for box in boxes_item] for boxes_item in boxes] | |
masks, conf_scores = sam_box_input(model_dict, image=sam_input_images, input_boxes=input_boxes, target_mask_shape=(H, W)) | |
mask_selected_batched_list, conf_score_selected_batched_list = [], [] | |
for boxes_item, masks_item in zip(boxes, masks): | |
mask_selected_list, conf_score_selected_list = [], [] | |
for box, three_masks in zip(boxes_item, masks_item): | |
mask_binary = utils.proportion_to_mask(box, H, W, return_np=True) | |
if verbose: | |
# Also the box is the input for SAM | |
plt.title("Binary mask from input box (for iou)") | |
plt.imshow(mask_binary) | |
plt.show() | |
coarse_ious = get_iou_with_resize(mask_binary, three_masks, masks_shape=mask_binary.shape) | |
mask_selected, conf_score_selected = select_mask(three_masks, conf_scores, coarse_ious=coarse_ious, | |
rule="largest_over_conf", | |
discourage_mask_below_confidence=discourage_mask_below_confidence, | |
discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou, | |
verbose=True) | |
mask_selected_list.append(mask_selected) | |
conf_score_selected_list.append(conf_score_selected) | |
mask_selected_batched_list.append(mask_selected_list) | |
conf_score_selected_batched_list.append(conf_score_selected_list) | |
return mask_selected_batched_list, conf_score_selected_batched_list | |