llm-grounded-diffusion / generation.py
Tony Lian
Update: add attention guidance and refactor the code
89f6983
import torch
import models
import utils
from models import pipelines, sam
from utils import parse, guidance, attn, latents, vis
from shared import (
model_dict,
sam_model_dict,
DEFAULT_SO_NEGATIVE_PROMPT,
DEFAULT_OVERALL_NEGATIVE_PROMPT,
)
verbose = False
vae, tokenizer, text_encoder, unet, dtype = (
model_dict.vae,
model_dict.tokenizer,
model_dict.text_encoder,
model_dict.unet,
model_dict.dtype,
)
model_dict.update(sam_model_dict)
# Hyperparams
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
H, W = height // 8, width // 8 # size of the latent
guidance_scale = 7.5 # Scale for classifier-free guidance
# batch size that is not 1 is not supported
overall_batch_size = 1
# semantic guidance kwargs (single object)
guidance_attn_keys = pipelines.DEFAULT_GUIDANCE_ATTN_KEYS
# discourage masks with confidence below
discourage_mask_below_confidence = 0.85
# discourage masks with iou (with coarse binarized attention mask) below
discourage_mask_below_coarse_iou = 0.25
# This is controls the foreground variations
fg_blending_ratio = 0.1
run_ind = None
def generate_single_object_with_box(
prompt,
box,
phrase,
word,
input_latents,
input_embeddings,
semantic_guidance_kwargs,
obj_attn_key,
saved_cross_attn_keys,
sam_refine_kwargs,
num_inference_steps,
gligen_scheduled_sampling_beta=0.3,
verbose=False,
visualize=False,
**kwargs,
):
bboxes, phrases, words = [box], [phrase], [word]
if verbose:
print(f"Getting token map (prompt: {prompt})")
object_positions, word_token_indices = guidance.get_phrase_indices(
tokenizer=tokenizer,
prompt=prompt,
phrases=phrases,
words=words,
return_word_token_indices=True,
# Since the prompt for single object is from background prompt + object name, we will not have the case of not found
add_suffix_if_not_found=False,
verbose=verbose,
)
# phrases only has one item, so we select the first item in word_token_indices
word_token_index = word_token_indices[0]
if verbose:
print("word_token_index:", word_token_index)
# `offload_guidance_cross_attn_to_cpu` will greatly slow down generation
(
latents,
single_object_images,
saved_attns,
single_object_pil_images_box_ann,
latents_all,
) = pipelines.generate_gligen(
model_dict,
input_latents,
input_embeddings,
num_inference_steps,
bboxes,
phrases,
gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
guidance_scale=guidance_scale,
return_saved_cross_attn=True,
semantic_guidance=True,
semantic_guidance_bboxes=bboxes,
semantic_guidance_object_positions=object_positions,
semantic_guidance_kwargs=semantic_guidance_kwargs,
saved_cross_attn_keys=[obj_attn_key, *saved_cross_attn_keys],
return_cond_ca_only=True,
return_token_ca_only=word_token_index,
offload_cross_attn_to_cpu=False,
return_box_vis=True,
save_all_latents=True,
dynamic_num_inference_steps=True,
**kwargs,
)
# `saved_cross_attn_keys` kwargs may have duplicates
utils.free_memory()
single_object_pil_image_box_ann = single_object_pil_images_box_ann[0]
if visualize:
print("Single object image")
vis.display(single_object_pil_image_box_ann)
mask_selected, conf_score_selected = sam.sam_refine_box(
sam_input_image=single_object_images[0],
box=box,
model_dict=model_dict,
verbose=verbose,
**sam_refine_kwargs,
)
mask_selected_tensor = torch.tensor(mask_selected)
if verbose:
vis.visualize(mask_selected, "Mask (selected) after resize")
# This is only for visualizations
masked_latents = latents_all * mask_selected_tensor[None, None, None, ...]
vis.visualize_masked_latents(
latents_all, masked_latents, timestep_T=False, timestep_0=True
)
return (
latents_all,
mask_selected_tensor,
saved_attns,
single_object_pil_image_box_ann,
)
def get_masked_latents_all_list(
so_prompt_phrase_word_box_list,
input_latents_list,
so_input_embeddings,
verbose=False,
**kwargs,
):
latents_all_list, mask_tensor_list, saved_attns_list, so_img_list = [], [], [], []
if not so_prompt_phrase_word_box_list:
return latents_all_list, mask_tensor_list, saved_attns_list
so_uncond_embeddings, so_cond_embeddings = so_input_embeddings
for idx, ((prompt, phrase, word, box), input_latents) in enumerate(
zip(so_prompt_phrase_word_box_list, input_latents_list)
):
so_current_cond_embeddings = so_cond_embeddings[idx : idx + 1]
so_current_text_embeddings = torch.cat(
[so_uncond_embeddings, so_current_cond_embeddings], dim=0
)
so_current_input_embeddings = (
so_current_text_embeddings,
so_uncond_embeddings,
so_current_cond_embeddings,
)
latents_all, mask_tensor, saved_attns, so_img = generate_single_object_with_box(
prompt,
box,
phrase,
word,
input_latents,
input_embeddings=so_current_input_embeddings,
verbose=verbose,
**kwargs,
)
latents_all_list.append(latents_all)
mask_tensor_list.append(mask_tensor)
saved_attns_list.append(saved_attns)
so_img_list.append(so_img)
return latents_all_list, mask_tensor_list, saved_attns_list, so_img_list
# Note: need to keep the supervision, especially the box corrdinates, corresponds to each other in single object and overall.
def run(
spec,
bg_seed=1,
overall_prompt_override="",
fg_seed_start=20,
frozen_step_ratio=0.4,
num_inference_steps=20,
loss_scale=20,
loss_threshold=5.0,
max_iter=[2] * 5 + [1] * 10,
max_index_step=15,
overall_loss_scale=20,
overall_loss_threshold=5.0,
overall_max_iter=[4] * 5 + [3] * 5 + [2] * 5 + [2] * 5 + [1] * 10,
overall_max_index_step=30,
so_gligen_scheduled_sampling_beta=0.4,
overall_gligen_scheduled_sampling_beta=0.4,
ref_ca_loss_weight=0.5,
so_center_box=False,
fg_blending_ratio=0.1,
scheduler_key="dpm_scheduler",
so_negative_prompt=DEFAULT_SO_NEGATIVE_PROMPT,
overall_negative_prompt=DEFAULT_OVERALL_NEGATIVE_PROMPT,
so_horizontal_center_only=True,
align_with_overall_bboxes=False,
horizontal_shift_only=True,
use_fast_schedule=True,
# Transfer the cross-attention from single object generation (with ref_ca_saved_attns)
# Use reference cross attention to guide the cross attention in the overall generation
use_ref_ca=True,
use_autocast=False,
):
"""
so_center_box: using centered box in single object generation
so_horizontal_center_only: move to the center horizontally only
align_with_overall_bboxes: Align the center of the mask, latents, and cross-attention with the center of the box in overall bboxes
horizontal_shift_only: only shift horizontally for the alignment of mask, latents, and cross-attention
"""
frozen_step_ratio = min(max(frozen_step_ratio, 0.0), 1.0)
frozen_steps = int(num_inference_steps * frozen_step_ratio)
print(
"generation:",
spec,
bg_seed,
fg_seed_start,
frozen_step_ratio,
so_gligen_scheduled_sampling_beta,
overall_gligen_scheduled_sampling_beta,
overall_max_index_step,
)
(
so_prompt_phrase_word_box_list,
overall_prompt,
overall_phrases_words_bboxes,
) = parse.convert_spec(spec, height, width, verbose=verbose)
if overall_prompt_override and overall_prompt_override.strip():
overall_prompt = overall_prompt_override.strip()
overall_phrases, overall_words, overall_bboxes = (
[item[0] for item in overall_phrases_words_bboxes],
[item[1] for item in overall_phrases_words_bboxes],
[item[2] for item in overall_phrases_words_bboxes],
)
# The so box is centered but the overall boxes are not (since we need to place to the right place).
if so_center_box:
so_prompt_phrase_word_box_list = [
(
prompt,
phrase,
word,
utils.get_centered_box(
bbox, horizontal_center_only=so_horizontal_center_only
),
)
for prompt, phrase, word, bbox in so_prompt_phrase_word_box_list
]
if verbose:
print(
f"centered so_prompt_phrase_word_box_list: {so_prompt_phrase_word_box_list}"
)
so_boxes = [item[-1] for item in so_prompt_phrase_word_box_list]
so_negative_prompt = DEFAULT_SO_NEGATIVE_PROMPT
overall_negative_prompt = DEFAULT_OVERALL_NEGATIVE_PROMPT
if "extra_neg_prompt" in spec and spec["extra_neg_prompt"]:
so_negative_prompt = spec["extra_neg_prompt"] + ", " + so_negative_prompt
overall_negative_prompt = (
spec["extra_neg_prompt"] + ", " + overall_negative_prompt
)
semantic_guidance_kwargs = dict(
loss_scale=loss_scale,
loss_threshold=loss_threshold,
max_iter=max_iter,
max_index_step=max_index_step,
use_ratio_based_loss=False,
guidance_attn_keys=guidance_attn_keys,
verbose=True,
)
sam_refine_kwargs = dict(
discourage_mask_below_confidence=discourage_mask_below_confidence,
discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou,
height=height,
width=width,
H=H,
W=W,
)
if verbose:
vis.visualize_bboxes(
bboxes=[item[-1] for item in so_prompt_phrase_word_box_list], H=H, W=W
)
# Note that so and overall use different negative prompts
with torch.autocast("cuda", enabled=use_autocast):
so_prompts = [item[0] for item in so_prompt_phrase_word_box_list]
if so_prompts:
so_input_embeddings = models.encode_prompts(
prompts=so_prompts,
tokenizer=tokenizer,
text_encoder=text_encoder,
negative_prompt=so_negative_prompt,
one_uncond_input_only=True,
)
else:
so_input_embeddings = []
input_latents_list, latents_bg = latents.get_input_latents_list(
model_dict,
bg_seed=bg_seed,
fg_seed_start=fg_seed_start,
so_boxes=so_boxes,
fg_blending_ratio=fg_blending_ratio,
height=height,
width=width,
verbose=False,
)
if use_fast_schedule:
fast_after_steps = max(frozen_steps, overall_max_index_step) if use_ref_ca else frozen_steps
else:
fast_after_steps = None
if use_ref_ca or frozen_steps > 0:
(
latents_all_list,
mask_tensor_list,
saved_attns_list,
so_img_list,
) = get_masked_latents_all_list(
so_prompt_phrase_word_box_list,
input_latents_list,
gligen_scheduled_sampling_beta=so_gligen_scheduled_sampling_beta,
semantic_guidance_kwargs=semantic_guidance_kwargs,
obj_attn_key=("down", 2, 1, 0),
saved_cross_attn_keys=guidance_attn_keys if use_ref_ca else [],
sam_refine_kwargs=sam_refine_kwargs,
so_input_embeddings=so_input_embeddings,
num_inference_steps=num_inference_steps,
scheduler_key=scheduler_key,
verbose=verbose,
fast_after_steps=fast_after_steps,
fast_rate=2,
)
else:
# No per-box guidance
(latents_all_list, mask_tensor_list, saved_attns_list, so_img_list) = [], [], [], []
(
composed_latents,
foreground_indices,
offset_list,
) = latents.compose_latents_with_alignment(
model_dict,
latents_all_list,
mask_tensor_list,
num_inference_steps,
overall_batch_size,
height,
width,
latents_bg=latents_bg,
align_with_overall_bboxes=align_with_overall_bboxes,
overall_bboxes=overall_bboxes,
horizontal_shift_only=horizontal_shift_only,
use_fast_schedule=use_fast_schedule,
fast_after_steps=fast_after_steps,
)
# NOTE: need to ensure overall embeddings are generated after the update of overall prompt
(
overall_object_positions,
overall_word_token_indices,
overall_prompt
) = guidance.get_phrase_indices(
tokenizer=tokenizer,
prompt=overall_prompt,
phrases=overall_phrases,
words=overall_words,
verbose=verbose,
return_word_token_indices=True,
add_suffix_if_not_found=True
)
overall_input_embeddings = models.encode_prompts(
prompts=[overall_prompt],
tokenizer=tokenizer,
negative_prompt=overall_negative_prompt,
text_encoder=text_encoder,
)
if use_ref_ca:
# ref_ca_saved_attns has the same hierarchy as bboxes
ref_ca_saved_attns = []
flattened_box_idx = 0
for bboxes in overall_bboxes:
# bboxes: correspond to a phrase
ref_ca_current_phrase_saved_attns = []
for bbox in bboxes:
# each individual bbox
saved_attns = saved_attns_list[flattened_box_idx]
if align_with_overall_bboxes:
offset = offset_list[flattened_box_idx]
saved_attns = attn.shift_saved_attns(
saved_attns,
offset,
guidance_attn_keys=guidance_attn_keys,
horizontal_shift_only=horizontal_shift_only,
)
ref_ca_current_phrase_saved_attns.append(saved_attns)
flattened_box_idx += 1
ref_ca_saved_attns.append(ref_ca_current_phrase_saved_attns)
overall_bboxes_flattened, overall_phrases_flattened = [], []
for overall_bboxes_item, overall_phrase in zip(overall_bboxes, overall_phrases):
for overall_bbox in overall_bboxes_item:
overall_bboxes_flattened.append(overall_bbox)
overall_phrases_flattened.append(overall_phrase)
# This is currently not-shared with the single object one.
overall_semantic_guidance_kwargs = dict(
loss_scale=overall_loss_scale,
loss_threshold=overall_loss_threshold,
max_iter=overall_max_iter,
max_index_step=overall_max_index_step,
# ref_ca comes from the attention map of the word token of the phrase in single object generation, so we apply it only to the word token of the phrase in overall generation.
ref_ca_word_token_only=True,
# If a word is not provided, we use the last token.
ref_ca_last_token_only=True,
ref_ca_saved_attns=ref_ca_saved_attns if use_ref_ca else None,
word_token_indices=overall_word_token_indices,
guidance_attn_keys=guidance_attn_keys,
ref_ca_loss_weight=ref_ca_loss_weight,
use_ratio_based_loss=False,
verbose=True,
)
# Generate with composed latents
# Foreground should be frozen
frozen_mask = foreground_indices != 0
_, images = pipelines.generate_gligen(
model_dict,
composed_latents,
overall_input_embeddings,
num_inference_steps,
overall_bboxes_flattened,
overall_phrases_flattened,
guidance_scale=guidance_scale,
gligen_scheduled_sampling_beta=overall_gligen_scheduled_sampling_beta,
semantic_guidance=True,
semantic_guidance_bboxes=overall_bboxes,
semantic_guidance_object_positions=overall_object_positions,
semantic_guidance_kwargs=overall_semantic_guidance_kwargs,
frozen_steps=frozen_steps,
frozen_mask=frozen_mask,
scheduler_key=scheduler_key,
)
print(
f"Generation with spatial guidance from input latents and first {frozen_steps} steps frozen (directly from the composed latents input)"
)
print("Generation from composed latents (with semantic guidance)")
utils.free_memory()
return images[0], so_img_list