Spaces:
Sleeping
Sleeping
Tony Lian
commited on
Commit
•
ec7f11c
1
Parent(s):
9668cda
Allow using different schedulers and negative prompts
Browse files- app.py +19 -4
- baseline.py +5 -4
- generation.py +7 -16
- models/models.py +4 -7
- models/pipelines.py +4 -4
- shared.py +6 -2
app.py
CHANGED
@@ -8,6 +8,7 @@ from utils.parse import filter_boxes
|
|
8 |
from generation import run as run_ours
|
9 |
from baseline import run as run_baseline
|
10 |
import torch
|
|
|
11 |
from examples import stage1_examples, stage2_examples
|
12 |
|
13 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
@@ -87,7 +88,7 @@ def get_layout_image(response):
|
|
87 |
def get_layout_image_gallery(response):
|
88 |
return [get_layout_image(response)]
|
89 |
|
90 |
-
def get_ours_image(response, seed, num_inference_steps, fg_seed_start, fg_blending_ratio=0.1, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta=0.3, show_so_imgs=False, scale_boxes=False):
|
91 |
if response == "":
|
92 |
response = layout_placeholder
|
93 |
gen_boxes, bg_prompt = parse_input(response)
|
@@ -98,10 +99,18 @@ def get_ours_image(response, seed, num_inference_steps, fg_seed_start, fg_blendi
|
|
98 |
'gen_boxes': gen_boxes,
|
99 |
'bg_prompt': bg_prompt
|
100 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
image_np, so_img_list = run_ours(
|
102 |
spec, bg_seed=seed, fg_seed_start=fg_seed_start,
|
103 |
fg_blending_ratio=fg_blending_ratio,frozen_step_ratio=frozen_step_ratio,
|
104 |
-
gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta, num_inference_steps=num_inference_steps
|
|
|
|
|
105 |
images = [image_np]
|
106 |
if show_so_imgs:
|
107 |
images.extend([np.asarray(so_img) for so_img in so_img_list])
|
@@ -110,7 +119,10 @@ def get_ours_image(response, seed, num_inference_steps, fg_seed_start, fg_blendi
|
|
110 |
def get_baseline_image(prompt, seed):
|
111 |
if prompt == "":
|
112 |
prompt = prompt_placeholder
|
113 |
-
|
|
|
|
|
|
|
114 |
return [image_np]
|
115 |
|
116 |
def parse_input(text=None):
|
@@ -232,17 +244,20 @@ with gr.Blocks(
|
|
232 |
with gr.Accordion("Advanced options", open=False):
|
233 |
seed = gr.Slider(0, 10000, value=0, step=1, label="Seed")
|
234 |
num_inference_steps = gr.Slider(1, 50, value=20, step=1, label="Number of inference steps")
|
|
|
235 |
fg_seed_start = gr.Slider(0, 10000, value=20, step=1, label="Seed for foreground variation")
|
236 |
fg_blending_ratio = gr.Slider(0, 1, value=0.1, step=0.01, label="Variations added to foreground for single object generation (0: no variation, 1: max variation)")
|
237 |
frozen_step_ratio = gr.Slider(0, 1, value=0.4, step=0.1, label="Foreground frozen steps ratio (higher: preserve object attributes; lower: higher coherence; set to 0: (almost) equivalent to vanilla GLIGEN except details)")
|
238 |
gligen_scheduled_sampling_beta = gr.Slider(0, 1, value=0.3, step=0.1, label="GLIGEN guidance steps ratio (the beta value)")
|
|
|
|
|
239 |
show_so_imgs = gr.Checkbox(label="Show annotated single object generations", show_label=False)
|
240 |
with gr.Column(scale=1):
|
241 |
gallery = gr.Gallery(
|
242 |
label="Generated image", show_label=False, elem_id="gallery"
|
243 |
).style(columns=[1], rows=[1], object_fit="contain", preview=True)
|
244 |
visualize_btn.click(fn=get_layout_image_gallery, inputs=response, outputs=gallery, api_name="visualize-layout")
|
245 |
-
generate_btn.click(fn=get_ours_image, inputs=[response, seed, num_inference_steps, fg_seed_start, fg_blending_ratio, frozen_step_ratio, gligen_scheduled_sampling_beta, show_so_imgs], outputs=gallery, api_name="layout-to-image")
|
246 |
|
247 |
gr.Examples(
|
248 |
stage2_examples,
|
|
|
8 |
from generation import run as run_ours
|
9 |
from baseline import run as run_baseline
|
10 |
import torch
|
11 |
+
from shared import DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
|
12 |
from examples import stage1_examples, stage2_examples
|
13 |
|
14 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
|
|
88 |
def get_layout_image_gallery(response):
|
89 |
return [get_layout_image(response)]
|
90 |
|
91 |
+
def get_ours_image(response, seed, num_inference_steps, dpm_scheduler, fg_seed_start, fg_blending_ratio=0.1, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta=0.3, so_negative_prompt="", overall_negative_prompt="", show_so_imgs=False, scale_boxes=False):
|
92 |
if response == "":
|
93 |
response = layout_placeholder
|
94 |
gen_boxes, bg_prompt = parse_input(response)
|
|
|
99 |
'gen_boxes': gen_boxes,
|
100 |
'bg_prompt': bg_prompt
|
101 |
}
|
102 |
+
|
103 |
+
if dpm_scheduler:
|
104 |
+
scheduler_key = "dpm_scheduler"
|
105 |
+
else:
|
106 |
+
scheduler_key = "scheduler"
|
107 |
+
|
108 |
image_np, so_img_list = run_ours(
|
109 |
spec, bg_seed=seed, fg_seed_start=fg_seed_start,
|
110 |
fg_blending_ratio=fg_blending_ratio,frozen_step_ratio=frozen_step_ratio,
|
111 |
+
gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta, num_inference_steps=num_inference_steps, scheduler_key=scheduler_key,
|
112 |
+
so_negative_prompt=so_negative_prompt, overall_negative_prompt=overall_negative_prompt
|
113 |
+
)
|
114 |
images = [image_np]
|
115 |
if show_so_imgs:
|
116 |
images.extend([np.asarray(so_img) for so_img in so_img_list])
|
|
|
119 |
def get_baseline_image(prompt, seed):
|
120 |
if prompt == "":
|
121 |
prompt = prompt_placeholder
|
122 |
+
|
123 |
+
scheduler_key = "dpm_scheduler"
|
124 |
+
|
125 |
+
image_np = run_baseline(prompt, bg_seed=seed, scheduler_key=scheduler_key)
|
126 |
return [image_np]
|
127 |
|
128 |
def parse_input(text=None):
|
|
|
244 |
with gr.Accordion("Advanced options", open=False):
|
245 |
seed = gr.Slider(0, 10000, value=0, step=1, label="Seed")
|
246 |
num_inference_steps = gr.Slider(1, 50, value=20, step=1, label="Number of inference steps")
|
247 |
+
dpm_scheduler = gr.Checkbox(label="Use DPM scheduler (unchecked: DDIM scheduler, may have better coherence, recommend 50 inference steps)", show_label=False, value=True)
|
248 |
fg_seed_start = gr.Slider(0, 10000, value=20, step=1, label="Seed for foreground variation")
|
249 |
fg_blending_ratio = gr.Slider(0, 1, value=0.1, step=0.01, label="Variations added to foreground for single object generation (0: no variation, 1: max variation)")
|
250 |
frozen_step_ratio = gr.Slider(0, 1, value=0.4, step=0.1, label="Foreground frozen steps ratio (higher: preserve object attributes; lower: higher coherence; set to 0: (almost) equivalent to vanilla GLIGEN except details)")
|
251 |
gligen_scheduled_sampling_beta = gr.Slider(0, 1, value=0.3, step=0.1, label="GLIGEN guidance steps ratio (the beta value)")
|
252 |
+
so_negative_prompt = gr.Textbox(lines=1, label="Negative prompt for single object generation", value=DEFAULT_SO_NEGATIVE_PROMPT)
|
253 |
+
overall_negative_prompt = gr.Textbox(lines=1, label="Negative prompt for overall generation", value=DEFAULT_OVERALL_NEGATIVE_PROMPT)
|
254 |
show_so_imgs = gr.Checkbox(label="Show annotated single object generations", show_label=False)
|
255 |
with gr.Column(scale=1):
|
256 |
gallery = gr.Gallery(
|
257 |
label="Generated image", show_label=False, elem_id="gallery"
|
258 |
).style(columns=[1], rows=[1], object_fit="contain", preview=True)
|
259 |
visualize_btn.click(fn=get_layout_image_gallery, inputs=response, outputs=gallery, api_name="visualize-layout")
|
260 |
+
generate_btn.click(fn=get_ours_image, inputs=[response, seed, num_inference_steps, dpm_scheduler, fg_seed_start, fg_blending_ratio, frozen_step_ratio, gligen_scheduled_sampling_beta, so_negative_prompt, overall_negative_prompt, show_so_imgs], outputs=gallery, api_name="layout-to-image")
|
261 |
|
262 |
gr.Examples(
|
263 |
stage2_examples,
|
baseline.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
import torch
|
4 |
import models
|
5 |
from models import pipelines
|
6 |
-
from shared import model_dict
|
7 |
|
8 |
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.scheduler, model_dict.dtype
|
9 |
|
@@ -17,9 +17,10 @@ batch_size = 1
|
|
17 |
# h, w
|
18 |
image_scale = (512, 512)
|
19 |
|
20 |
-
bg_negative =
|
21 |
|
22 |
-
|
|
|
23 |
print(f"prompt: {prompt}")
|
24 |
generator = torch.Generator(models.torch_device).manual_seed(bg_seed)
|
25 |
|
@@ -34,7 +35,7 @@ def run(prompt, bg_seed=1, num_inference_steps=20):
|
|
34 |
pipelines.gligen_enable_fuser(model_dict['unet'], enabled=False)
|
35 |
_, images = pipelines.generate(
|
36 |
model_dict, latents, input_embeddings, num_inference_steps,
|
37 |
-
guidance_scale=guidance_scale
|
38 |
)
|
39 |
|
40 |
return images[0]
|
|
|
3 |
import torch
|
4 |
import models
|
5 |
from models import pipelines
|
6 |
+
from shared import model_dict, DEFAULT_OVERALL_NEGATIVE_PROMPT
|
7 |
|
8 |
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.scheduler, model_dict.dtype
|
9 |
|
|
|
17 |
# h, w
|
18 |
image_scale = (512, 512)
|
19 |
|
20 |
+
bg_negative = DEFAULT_OVERALL_NEGATIVE_PROMPT
|
21 |
|
22 |
+
# Using dpm scheduler by default
|
23 |
+
def run(prompt, scheduler_key='dpm_scheduler', bg_seed=1, num_inference_steps=20):
|
24 |
print(f"prompt: {prompt}")
|
25 |
generator = torch.Generator(models.torch_device).manual_seed(bg_seed)
|
26 |
|
|
|
35 |
pipelines.gligen_enable_fuser(model_dict['unet'], enabled=False)
|
36 |
_, images = pipelines.generate(
|
37 |
model_dict, latents, input_embeddings, num_inference_steps,
|
38 |
+
guidance_scale=guidance_scale, scheduler_key=scheduler_key
|
39 |
)
|
40 |
|
41 |
return images[0]
|
generation.py
CHANGED
@@ -1,17 +1,15 @@
|
|
1 |
version = "v3.0"
|
2 |
|
3 |
-
from PIL import Image
|
4 |
import torch
|
5 |
import models
|
6 |
-
from models import load_sd
|
7 |
import utils
|
8 |
from models import pipelines, sam
|
9 |
from utils import parse, latents
|
10 |
-
from shared import model_dict, sam_model_dict
|
11 |
|
12 |
verbose = False
|
13 |
|
14 |
-
vae, tokenizer, text_encoder, unet,
|
15 |
|
16 |
model_dict.update(sam_model_dict)
|
17 |
|
@@ -37,14 +35,14 @@ run_ind = None
|
|
37 |
|
38 |
def generate_single_object_with_box(prompt, box, phrase, word, input_latents, input_embeddings,
|
39 |
sam_refine_kwargs, num_inference_steps, gligen_scheduled_sampling_beta=0.3,
|
40 |
-
verbose=False, visualize=True):
|
41 |
|
42 |
bboxes, phrases, words = [box], [phrase], [word]
|
43 |
|
44 |
latents, single_object_images, single_object_pil_images_box_ann, latents_all = pipelines.generate_gligen(
|
45 |
model_dict, input_latents, input_embeddings, num_inference_steps, bboxes, phrases, gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
|
46 |
guidance_scale=guidance_scale, return_saved_cross_attn=False,
|
47 |
-
return_box_vis=True, save_all_latents=True
|
48 |
)
|
49 |
|
50 |
mask_selected, conf_score_selected = sam.sam_refine_box(sam_input_image=single_object_images[0], box=box, model_dict=model_dict, verbose=verbose, **sam_refine_kwargs)
|
@@ -78,7 +76,7 @@ def get_masked_latents_all_list(so_prompt_phrase_word_box_list, input_latents_li
|
|
78 |
|
79 |
def run(
|
80 |
spec, bg_seed = 1, fg_seed_start = 20, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta = 0.3, num_inference_steps = 20,
|
81 |
-
so_center_box = False, fg_blending_ratio = 0.1, so_horizontal_center_only = True,
|
82 |
align_with_overall_bboxes = False, horizontal_shift_only = True
|
83 |
):
|
84 |
"""
|
@@ -106,13 +104,6 @@ def run(
|
|
106 |
print(f"centered so_prompt_phrase_word_box_list: {so_prompt_phrase_word_box_list}")
|
107 |
so_boxes = [item[-1] for item in so_prompt_phrase_word_box_list]
|
108 |
|
109 |
-
if True:
|
110 |
-
so_negative_prompt = "artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image, bad proportions, duplicate, two, many, group, occlusion, occluded, side, border, collate"
|
111 |
-
overall_negative_prompt = "artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image, bad proportions, duplicate"
|
112 |
-
else:
|
113 |
-
so_negative_prompt = ""
|
114 |
-
overall_negative_prompt = ""
|
115 |
-
|
116 |
sam_refine_kwargs = dict(
|
117 |
discourage_mask_below_confidence=discourage_mask_below_confidence, discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou,
|
118 |
height=height, width=width, H=H, W=W
|
@@ -139,7 +130,7 @@ def run(
|
|
139 |
latents_all_list, mask_tensor_list, so_img_list = get_masked_latents_all_list(
|
140 |
so_prompt_phrase_word_box_list, input_latents_list,
|
141 |
gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
|
142 |
-
sam_refine_kwargs=sam_refine_kwargs, so_input_embeddings=so_input_embeddings, num_inference_steps=num_inference_steps, verbose=verbose
|
143 |
)
|
144 |
|
145 |
|
@@ -166,7 +157,7 @@ def run(
|
|
166 |
model_dict, composed_latents, overall_input_embeddings, num_inference_steps,
|
167 |
overall_bboxes_flattened, overall_phrases_flattened, guidance_scale=guidance_scale,
|
168 |
gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
|
169 |
-
frozen_steps=frozen_steps, frozen_mask=frozen_mask
|
170 |
)
|
171 |
|
172 |
print(f"Generation with spatial guidance from input latents and first {frozen_steps} steps frozen (directly from the composed latents input)")
|
|
|
1 |
version = "v3.0"
|
2 |
|
|
|
3 |
import torch
|
4 |
import models
|
|
|
5 |
import utils
|
6 |
from models import pipelines, sam
|
7 |
from utils import parse, latents
|
8 |
+
from shared import model_dict, sam_model_dict, DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
|
9 |
|
10 |
verbose = False
|
11 |
|
12 |
+
vae, tokenizer, text_encoder, unet, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.dtype
|
13 |
|
14 |
model_dict.update(sam_model_dict)
|
15 |
|
|
|
35 |
|
36 |
def generate_single_object_with_box(prompt, box, phrase, word, input_latents, input_embeddings,
|
37 |
sam_refine_kwargs, num_inference_steps, gligen_scheduled_sampling_beta=0.3,
|
38 |
+
verbose=False, scheduler_key=None, visualize=True):
|
39 |
|
40 |
bboxes, phrases, words = [box], [phrase], [word]
|
41 |
|
42 |
latents, single_object_images, single_object_pil_images_box_ann, latents_all = pipelines.generate_gligen(
|
43 |
model_dict, input_latents, input_embeddings, num_inference_steps, bboxes, phrases, gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
|
44 |
guidance_scale=guidance_scale, return_saved_cross_attn=False,
|
45 |
+
return_box_vis=True, save_all_latents=True, scheduler_key=scheduler_key
|
46 |
)
|
47 |
|
48 |
mask_selected, conf_score_selected = sam.sam_refine_box(sam_input_image=single_object_images[0], box=box, model_dict=model_dict, verbose=verbose, **sam_refine_kwargs)
|
|
|
76 |
|
77 |
def run(
|
78 |
spec, bg_seed = 1, fg_seed_start = 20, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta = 0.3, num_inference_steps = 20,
|
79 |
+
so_center_box = False, fg_blending_ratio = 0.1, scheduler_key='dpm_scheduler', so_negative_prompt = DEFAULT_SO_NEGATIVE_PROMPT, overall_negative_prompt = DEFAULT_OVERALL_NEGATIVE_PROMPT, so_horizontal_center_only = True,
|
80 |
align_with_overall_bboxes = False, horizontal_shift_only = True
|
81 |
):
|
82 |
"""
|
|
|
104 |
print(f"centered so_prompt_phrase_word_box_list: {so_prompt_phrase_word_box_list}")
|
105 |
so_boxes = [item[-1] for item in so_prompt_phrase_word_box_list]
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
sam_refine_kwargs = dict(
|
108 |
discourage_mask_below_confidence=discourage_mask_below_confidence, discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou,
|
109 |
height=height, width=width, H=H, W=W
|
|
|
130 |
latents_all_list, mask_tensor_list, so_img_list = get_masked_latents_all_list(
|
131 |
so_prompt_phrase_word_box_list, input_latents_list,
|
132 |
gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
|
133 |
+
sam_refine_kwargs=sam_refine_kwargs, so_input_embeddings=so_input_embeddings, num_inference_steps=num_inference_steps, scheduler_key=scheduler_key, verbose=verbose
|
134 |
)
|
135 |
|
136 |
|
|
|
157 |
model_dict, composed_latents, overall_input_embeddings, num_inference_steps,
|
158 |
overall_bboxes_flattened, overall_phrases_flattened, guidance_scale=guidance_scale,
|
159 |
gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta,
|
160 |
+
frozen_steps=frozen_steps, frozen_mask=frozen_mask, scheduler_key=scheduler_key
|
161 |
)
|
162 |
|
163 |
print(f"Generation with spatial guidance from input latents and first {frozen_steps} steps frozen (directly from the composed latents input)")
|
models/models.py
CHANGED
@@ -8,7 +8,7 @@ import numpy as np
|
|
8 |
from utils.latents import get_unscaled_latents, get_scaled_latents, blend_latents
|
9 |
from utils import torch_device
|
10 |
|
11 |
-
def load_sd(key="runwayml/stable-diffusion-v1-5", use_fp16=False, load_inverse_scheduler=True
|
12 |
"""
|
13 |
Keys:
|
14 |
key = "CompVis/stable-diffusion-v1-4"
|
@@ -22,7 +22,6 @@ def load_sd(key="runwayml/stable-diffusion-v1-5", use_fp16=False, load_inverse_s
|
|
22 |
```
|
23 |
|
24 |
use_fp16: fp16 might have degraded performance
|
25 |
-
use_dpm_multistep_scheduler: DPMSolverMultistepScheduler
|
26 |
"""
|
27 |
|
28 |
# run final results in fp32
|
@@ -37,12 +36,10 @@ def load_sd(key="runwayml/stable-diffusion-v1-5", use_fp16=False, load_inverse_s
|
|
37 |
tokenizer = CLIPTokenizer.from_pretrained(key, subfolder="tokenizer", revision=revision, torch_dtype=dtype)
|
38 |
text_encoder = CLIPTextModel.from_pretrained(key, subfolder="text_encoder", revision=revision, torch_dtype=dtype).to(torch_device)
|
39 |
unet = UNet2DConditionModel.from_pretrained(key, subfolder="unet", revision=revision, torch_dtype=dtype).to(torch_device)
|
40 |
-
|
41 |
-
|
42 |
-
else:
|
43 |
-
scheduler = DDIMScheduler.from_pretrained(key, subfolder="scheduler", revision=revision, torch_dtype=dtype)
|
44 |
|
45 |
-
model_dict = EasyDict(vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, dtype=dtype)
|
46 |
|
47 |
if load_inverse_scheduler:
|
48 |
inverse_scheduler = DDIMInverseScheduler.from_config(scheduler.config)
|
|
|
8 |
from utils.latents import get_unscaled_latents, get_scaled_latents, blend_latents
|
9 |
from utils import torch_device
|
10 |
|
11 |
+
def load_sd(key="runwayml/stable-diffusion-v1-5", use_fp16=False, load_inverse_scheduler=True):
|
12 |
"""
|
13 |
Keys:
|
14 |
key = "CompVis/stable-diffusion-v1-4"
|
|
|
22 |
```
|
23 |
|
24 |
use_fp16: fp16 might have degraded performance
|
|
|
25 |
"""
|
26 |
|
27 |
# run final results in fp32
|
|
|
36 |
tokenizer = CLIPTokenizer.from_pretrained(key, subfolder="tokenizer", revision=revision, torch_dtype=dtype)
|
37 |
text_encoder = CLIPTextModel.from_pretrained(key, subfolder="text_encoder", revision=revision, torch_dtype=dtype).to(torch_device)
|
38 |
unet = UNet2DConditionModel.from_pretrained(key, subfolder="unet", revision=revision, torch_dtype=dtype).to(torch_device)
|
39 |
+
dpm_scheduler = DPMSolverMultistepScheduler.from_pretrained(key, subfolder="scheduler", revision=revision, torch_dtype=dtype)
|
40 |
+
scheduler = DDIMScheduler.from_pretrained(key, subfolder="scheduler", revision=revision, torch_dtype=dtype)
|
|
|
|
|
41 |
|
42 |
+
model_dict = EasyDict(vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, dpm_scheduler=dpm_scheduler, dtype=dtype)
|
43 |
|
44 |
if load_inverse_scheduler:
|
45 |
inverse_scheduler = DDIMInverseScheduler.from_config(scheduler.config)
|
models/pipelines.py
CHANGED
@@ -53,8 +53,8 @@ def decode(vae, latents):
|
|
53 |
return images
|
54 |
|
55 |
@torch.no_grad()
|
56 |
-
def generate(model_dict, latents, input_embeddings, num_inference_steps, guidance_scale = 7.5, no_set_timesteps=False):
|
57 |
-
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict
|
58 |
text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings
|
59 |
|
60 |
if not no_set_timesteps:
|
@@ -93,11 +93,11 @@ def generate_gligen(model_dict, latents, input_embeddings, num_inference_steps,
|
|
93 |
frozen_steps=20, frozen_mask=None,
|
94 |
return_saved_cross_attn=False, saved_cross_attn_keys=None, return_cond_ca_only=False, return_token_ca_only=None,
|
95 |
offload_cross_attn_to_cpu=False, offload_latents_to_cpu=True,
|
96 |
-
return_box_vis=False, show_progress=True, save_all_latents=False):
|
97 |
"""
|
98 |
The `bboxes` should be a list, rather than a list of lists (one box per phrase, we can have multiple duplicated phrases).
|
99 |
"""
|
100 |
-
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict
|
101 |
text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings
|
102 |
|
103 |
if latents.dim() == 5:
|
|
|
53 |
return images
|
54 |
|
55 |
@torch.no_grad()
|
56 |
+
def generate(model_dict, latents, input_embeddings, num_inference_steps, guidance_scale = 7.5, no_set_timesteps=False, scheduler_key='dpm_scheduler'):
|
57 |
+
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict[scheduler_key], model_dict.dtype
|
58 |
text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings
|
59 |
|
60 |
if not no_set_timesteps:
|
|
|
93 |
frozen_steps=20, frozen_mask=None,
|
94 |
return_saved_cross_attn=False, saved_cross_attn_keys=None, return_cond_ca_only=False, return_token_ca_only=None,
|
95 |
offload_cross_attn_to_cpu=False, offload_latents_to_cpu=True,
|
96 |
+
return_box_vis=False, show_progress=True, save_all_latents=False, scheduler_key='dpm_scheduler'):
|
97 |
"""
|
98 |
The `bboxes` should be a list, rather than a list of lists (one box per phrase, we can have multiple duplicated phrases).
|
99 |
"""
|
100 |
+
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict[scheduler_key], model_dict.dtype
|
101 |
text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings
|
102 |
|
103 |
if latents.dim() == 5:
|
shared.py
CHANGED
@@ -1,11 +1,15 @@
|
|
1 |
from models import load_sd, sam
|
2 |
|
|
|
|
|
|
|
|
|
|
|
3 |
use_fp16 = False
|
4 |
-
use_dpm = True
|
5 |
|
6 |
sd_key = "gligen/diffusers-generation-text-box"
|
7 |
|
8 |
print(f"Using SD: {sd_key}")
|
9 |
-
model_dict = load_sd(key=sd_key, use_fp16=use_fp16,
|
10 |
|
11 |
sam_model_dict = sam.load_sam()
|
|
|
1 |
from models import load_sd, sam
|
2 |
|
3 |
+
|
4 |
+
DEFAULT_SO_NEGATIVE_PROMPT = "artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image, bad proportions, duplicate, two, many, group, occlusion, occluded, side, border, collate"
|
5 |
+
DEFAULT_OVERALL_NEGATIVE_PROMPT = "artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image, bad proportions, duplicate"
|
6 |
+
|
7 |
+
|
8 |
use_fp16 = False
|
|
|
9 |
|
10 |
sd_key = "gligen/diffusers-generation-text-box"
|
11 |
|
12 |
print(f"Using SD: {sd_key}")
|
13 |
+
model_dict = load_sd(key=sd_key, use_fp16=use_fp16, load_inverse_scheduler=False)
|
14 |
|
15 |
sam_model_dict = sam.load_sam()
|