version = "v3.0" import torch import numpy as np import models import utils from models import pipelines, sam from utils import parse, latents from shared import model_dict, sam_model_dict, DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT import gc verbose = False # Accelerates per-box generation use_fast_schedule = True vae, tokenizer, text_encoder, unet, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.dtype model_dict.update(sam_model_dict) # Hyperparams height = 512 # default height of Stable Diffusion width = 512 # default width of Stable Diffusion H, W = height // 8, width // 8 # size of the latent guidance_scale = 7.5 # Scale for classifier-free guidance # batch size that is not 1 is not supported overall_batch_size = 1 # discourage masks with confidence below discourage_mask_below_confidence = 0.85 # discourage masks with iou (with coarse binarized attention mask) below discourage_mask_below_coarse_iou = 0.25 run_ind = None def generate_single_object_with_box_batch(prompts, bboxes, phrases, words, input_latents_list, input_embeddings, sam_refine_kwargs, num_inference_steps, gligen_scheduled_sampling_beta=0.3, verbose=False, scheduler_key=None, visualize=True, batch_size=None, **kwargs): # batch_size=None: does not limit the batch size (pass all input together) # prompts and words are not used since we don't have cross-attention control in this function input_latents = torch.cat(input_latents_list, dim=0) # We need to "unsqueeze" to tell that we have only one box and phrase in each batch item bboxes, phrases = [[item] for item in bboxes], [[item] for item in phrases] input_len = len(bboxes) assert len(bboxes) == len(phrases), f"{len(bboxes)} != {len(phrases)}" if batch_size is None: batch_size = input_len run_times = int(np.ceil(input_len / batch_size)) mask_selected_list, single_object_pil_images_box_ann, latents_all = [], [], [] for batch_idx in range(run_times): input_latents_batch, bboxes_batch, phrases_batch = input_latents[batch_idx * batch_size:(batch_idx + 1) * batch_size], \ bboxes[batch_idx * batch_size:(batch_idx + 1) * batch_size], phrases[batch_idx * batch_size:(batch_idx + 1) * batch_size] input_embeddings_batch = input_embeddings[0], input_embeddings[1][batch_idx * batch_size:(batch_idx + 1) * batch_size] _, single_object_images_batch, single_object_pil_images_box_ann_batch, latents_all_batch = pipelines.generate_gligen( model_dict, input_latents_batch, input_embeddings_batch, num_inference_steps, bboxes_batch, phrases_batch, gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta, guidance_scale=guidance_scale, return_saved_cross_attn=False, return_box_vis=True, save_all_latents=True, batched_condition=True, scheduler_key=scheduler_key, **kwargs ) gc.collect() torch.cuda.empty_cache() # `sam_refine_boxes` also calls `empty_cache` so we don't need to explicitly empty the cache again. mask_selected, _ = sam.sam_refine_boxes(sam_input_images=single_object_images_batch, boxes=bboxes_batch, model_dict=model_dict, verbose=verbose, **sam_refine_kwargs) mask_selected_list.append(np.array(mask_selected)[:, 0]) single_object_pil_images_box_ann.append(single_object_pil_images_box_ann_batch) latents_all.append(latents_all_batch) single_object_pil_images_box_ann, latents_all = sum(single_object_pil_images_box_ann, []), torch.cat(latents_all, dim=1) # mask_selected_list: List(batch)[List(image)[List(box)[Array of shape (64, 64)]]] mask_selected = np.concatenate(mask_selected_list, axis=0) mask_selected = mask_selected.reshape((-1, *mask_selected.shape[-2:])) assert mask_selected.shape[0] == input_latents.shape[0], f"{mask_selected.shape[0]} != {input_latents.shape[0]}" print(mask_selected.shape) mask_selected_tensor = torch.tensor(mask_selected) latents_all = latents_all.transpose(0,1)[:,:,None,...] gc.collect() torch.cuda.empty_cache() return latents_all, mask_selected_tensor, single_object_pil_images_box_ann def get_masked_latents_all_list(so_prompt_phrase_word_box_list, input_latents_list, so_input_embeddings, verbose=False, **kwargs): latents_all_list, mask_tensor_list = [], [] if not so_prompt_phrase_word_box_list: return latents_all_list, mask_tensor_list prompts, bboxes, phrases, words = [], [], [], [] for prompt, phrase, word, box in so_prompt_phrase_word_box_list: prompts.append(prompt) bboxes.append(box) phrases.append(phrase) words.append(word) latents_all_list, mask_tensor_list, so_img_list = generate_single_object_with_box_batch(prompts, bboxes, phrases, words, input_latents_list, input_embeddings=so_input_embeddings, verbose=verbose, **kwargs) return latents_all_list, mask_tensor_list, so_img_list # Note: need to keep the supervision, especially the box corrdinates, corresponds to each other in single object and overall. def run( spec, bg_seed = 1, overall_prompt_override="", fg_seed_start = 20, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta = 0.3, num_inference_steps = 20, so_center_box = False, fg_blending_ratio = 0.1, scheduler_key='dpm_scheduler', so_negative_prompt = DEFAULT_SO_NEGATIVE_PROMPT, overall_negative_prompt = DEFAULT_OVERALL_NEGATIVE_PROMPT, so_horizontal_center_only = True, align_with_overall_bboxes = False, horizontal_shift_only = True, use_autocast = False, so_batch_size = None ): """ so_center_box: using centered box in single object generation so_horizontal_center_only: move to the center horizontally only align_with_overall_bboxes: Align the center of the mask, latents, and cross-attention with the center of the box in overall bboxes horizontal_shift_only: only shift horizontally for the alignment of mask, latents, and cross-attention """ print("generation:", spec, bg_seed, fg_seed_start, frozen_step_ratio, gligen_scheduled_sampling_beta) frozen_step_ratio = min(max(frozen_step_ratio, 0.), 1.) frozen_steps = int(num_inference_steps * frozen_step_ratio) if True: so_prompt_phrase_word_box_list, overall_prompt, overall_phrases_words_bboxes = parse.convert_spec(spec, height, width, verbose=verbose) if overall_prompt_override and overall_prompt_override.strip(): overall_prompt = overall_prompt_override.strip() overall_phrases, overall_words, overall_bboxes = [item[0] for item in overall_phrases_words_bboxes], [item[1] for item in overall_phrases_words_bboxes], [item[2] for item in overall_phrases_words_bboxes] # The so box is centered but the overall boxes are not (since we need to place to the right place). if so_center_box: so_prompt_phrase_word_box_list = [(prompt, phrase, word, utils.get_centered_box(bbox, horizontal_center_only=so_horizontal_center_only)) for prompt, phrase, word, bbox in so_prompt_phrase_word_box_list] if verbose: print(f"centered so_prompt_phrase_word_box_list: {so_prompt_phrase_word_box_list}") so_boxes = [item[-1] for item in so_prompt_phrase_word_box_list] sam_refine_kwargs = dict( discourage_mask_below_confidence=discourage_mask_below_confidence, discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou, height=height, width=width, H=H, W=W ) # Note that so and overall use different negative prompts with torch.autocast("cuda", enabled=use_autocast): so_prompts = [item[0] for item in so_prompt_phrase_word_box_list] if so_prompts: so_input_embeddings = models.encode_prompts(prompts=so_prompts, tokenizer=tokenizer, text_encoder=text_encoder, negative_prompt=so_negative_prompt, one_uncond_input_only=True) else: so_input_embeddings = [] overall_input_embeddings = models.encode_prompts(prompts=[overall_prompt], tokenizer=tokenizer, negative_prompt=overall_negative_prompt, text_encoder=text_encoder) input_latents_list, latents_bg = latents.get_input_latents_list( model_dict, bg_seed=bg_seed, fg_seed_start=fg_seed_start, so_boxes=so_boxes, fg_blending_ratio=fg_blending_ratio, height=height, width=width, verbose=False ) latents_all_list, mask_tensor_list, so_img_list = get_masked_latents_all_list( so_prompt_phrase_word_box_list, input_latents_list, gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta, sam_refine_kwargs=sam_refine_kwargs, so_input_embeddings=so_input_embeddings, num_inference_steps=num_inference_steps, scheduler_key=scheduler_key, verbose=verbose, batch_size=so_batch_size, fast_after_steps=frozen_steps if use_fast_schedule else None, fast_rate=2 ) composed_latents, foreground_indices, offset_list = latents.compose_latents_with_alignment( model_dict, latents_all_list, mask_tensor_list, num_inference_steps, overall_batch_size, height, width, latents_bg=latents_bg, align_with_overall_bboxes=align_with_overall_bboxes, overall_bboxes=overall_bboxes, horizontal_shift_only=horizontal_shift_only, use_fast_schedule=use_fast_schedule, fast_after_steps=frozen_steps ) overall_bboxes_flattened, overall_phrases_flattened = [], [] for overall_bboxes_item, overall_phrase in zip(overall_bboxes, overall_phrases): for overall_bbox in overall_bboxes_item: overall_bboxes_flattened.append(overall_bbox) overall_phrases_flattened.append(overall_phrase) # Generate with composed latents # Foreground should be frozen frozen_mask = foreground_indices != 0 regen_latents, images = pipelines.generate_gligen( model_dict, composed_latents, overall_input_embeddings, num_inference_steps, overall_bboxes_flattened, overall_phrases_flattened, guidance_scale=guidance_scale, gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta, frozen_steps=frozen_steps, frozen_mask=frozen_mask, scheduler_key=scheduler_key ) print(f"Generation with spatial guidance from input latents and first {frozen_steps} steps frozen (directly from the composed latents input)") print("Generation from composed latents (with semantic guidance)") # display(Image.fromarray(images[0]), "img", run_ind) gc.collect() torch.cuda.empty_cache() return images[0], so_img_list