import gradio as gr from fastai.vision.all import * examples = ["apple.jpg", "avocado.jpg", "mixed_fruit.jpg", "nectarine.jpg", "passion_fruit.jpg"] title = "Fruit prediction" description = "A fruit prediction app trained using a pretrained-Resnet50 model via the fastai library. The model is trained using 5000 images collected from duckduckgo." learn = load_learner("model.pkl") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr_interface = gr.Interface(fn=predict, inputs = gr.inputs.Image(shape = (512, 512)), outputs = gr.outputs.Label(num_top_classes = 3), title = title,description=description, examples = examples ) gr_interface.launch(share=True)