import gradio as gr from fastai.vision.all import * import pathlib temp = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath examples = ["apple.jpg", "avocado.jpg", "mixed_fruit.jpg", "nectarine.jpg", "passion_fruit.jpg", "peach.jpg"] title = "A fruit classification app" description = "A fruit classficiation app using fastai and a pretrained-Resnet50 model." learn = load_learner("model.pkl") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr_interface = gr.Interface(fn=predict, inputs = gr.inputs.Image(shape = (512, 512)), outputs = gr.outputs.Label(num_top_classes = 3), title = title,description=description, examples = examples ) gr_interface.launch(share=True)