Backpack / app.py
Lora
Initial Commit
c289bbc
raw
history blame
4.63 kB
import torch
import pandas as pd
import transformers
import gradio as gr
# def visualize_word(word, tokenizer, vecs, lm_head, count=5, contents=None):
def visualize_word(word, count=10, remove_space=False):
if not remove_space:
word = ' ' + word
print(f"Looking up word ['{word}']")
# seems very dumb to have to load the tokenizer every time, but I don't know how to pass a non-interface element into the function in gradio
tokenizer = transformers.AutoTokenizer.from_pretrained('gpt2')
vecs = torch.load("senses/all_vecs_mtx.pt")
lm_head = torch.load("senses/lm_head.pt")
print("lm_head.shape = ", lm_head.shape)
token_ids = tokenizer(word)['input_ids']
tokens = [tokenizer.decode(token_id) for token_id in token_ids]
tokens = ", ".join(tokens)
# look up sense vectors only for the first token
contents = vecs[token_ids[0]] # torch.Size([16, 768])
sense_names = []
pos_sense_word_lists = []
neg_sense_word_lists = []
for i in range(contents.shape[0]):
logits = contents[i,:] @ lm_head.t() # (vocab,) [768] @ [768, 50257] -> [50257]
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
sense_names.append('sense {}'.format(i+1))
# currently a lot of repetition
pos_sorted_words = [tokenizer.decode(sorted_indices[j]) for j in range(count)]
pos_sorted_logits = [sorted_logits[j].item() for j in range(count)]
pos_word_list = list(zip(pos_sorted_words, pos_sorted_logits))
pos_sense_word_lists.append(pos_word_list)
neg_sorted_words = [tokenizer.decode(sorted_indices[-j-1]) for j in range(count)]
neg_sorted_logits = [sorted_logits[-j-1].item() for j in range(count)]
neg_word_list = list(zip(neg_sorted_words, neg_sorted_logits))
neg_sense_word_lists.append(neg_word_list)
pos_data = dict(zip(sense_names, pos_sense_word_lists))
pos_df = pd.DataFrame(index=[i for i in range(count)],
columns=list(pos_data.keys()))
for prop, word_list in pos_data.items():
for i, word_pair in enumerate(word_list):
cell_value = "{} ({:.2f})".format(word_pair[0], word_pair[1])
pos_df.at[i, prop] = cell_value
neg_data = dict(zip(sense_names, neg_sense_word_lists))
neg_df = pd.DataFrame(index=[i for i in range(count)],
columns=list(neg_data.keys()))
for prop, word_list in neg_data.items():
for i, word_pair in enumerate(word_list):
cell_value = "{} ({:.2f})".format(word_pair[0], word_pair[1])
neg_df.at[i, prop] = cell_value
return pos_df, neg_df, tokens
# argp = argparse.ArgumentParser()
# argp.add_argument('vecs_path')
# argp.add_argument('lm_head_path')
# args = argp.parse_args()
# Load tokenizer and parameters
# tokenizer = transformers.AutoTokenizer.from_pretrained('gpt2')
# vecs = torch.load(args.vecs_path)
# lm_head = torch.load(args.lm_head_path)
# visualize_word(input('Enter a word:'), tokenizer, vecs, lm_head, count=5)
# visualize_word("fish", vecs, lm_head, count=COUNT)
with gr.Blocks() as demo:
gr.Markdown("""
## Backpack visualization: senses lookup
> Note: Backpack uses the GPT-2 tokenizer, which includes the space before a word as part of the token, so by default, a space character `' '` is added to the beginning of the word you look up. You can disable this by checking `Remove space before word`, but know this might cause strange behaviors like breaking `afraid` into `af` and `raid`, or `slight` into `s` and `light`.
""")
with gr.Row():
word = gr.Textbox(label="Word")
token_breakdown = gr.Textbox(label="Token Breakdown (senses are for the first token only)")
remove_space = gr.Checkbox(label="Remove space before word", default=False)
count = gr.Slider(minimum=1, maximum=20, value=10, label="Top K", step=1)
# sentence = gr.Textbox(label="Sentence")
pos_outputs = gr.Dataframe(label="Highest Scoring Senses")
neg_outputs = gr.Dataframe(label="Lowest Scoring Senses")
gr.Examples(
examples=["science", "afraid", "book", "slight"],
inputs=[word],
outputs=[pos_outputs, neg_outputs, token_breakdown],
fn=visualize_word,
# cache_examples=True,
)
gr.Button("Look up").click(
fn=visualize_word,
inputs= [word, count, remove_space],
outputs= [pos_outputs, neg_outputs, token_breakdown],
)
# sentence.select(
# fn=visualize_word,
# inputs= [word, count],
# outputs= [pos_outputs, neg_outputs],
# )
demo.launch(share=False)