|
import torch |
|
import pandas as pd |
|
import transformers |
|
import gradio as gr |
|
|
|
|
|
def visualize_word(word, count=10, remove_space=False): |
|
|
|
if not remove_space: |
|
word = ' ' + word |
|
print(f"Looking up word ['{word}']") |
|
|
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained('gpt2') |
|
vecs = torch.load("senses/all_vecs_mtx.pt") |
|
lm_head = torch.load("senses/lm_head.pt") |
|
print("lm_head.shape = ", lm_head.shape) |
|
|
|
token_ids = tokenizer(word)['input_ids'] |
|
tokens = [tokenizer.decode(token_id) for token_id in token_ids] |
|
tokens = ", ".join(tokens) |
|
|
|
contents = vecs[token_ids[0]] |
|
|
|
sense_names = [] |
|
pos_sense_word_lists = [] |
|
neg_sense_word_lists = [] |
|
|
|
for i in range(contents.shape[0]): |
|
logits = contents[i,:] @ lm_head.t() |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
sense_names.append('sense {}'.format(i+1)) |
|
|
|
|
|
pos_sorted_words = [tokenizer.decode(sorted_indices[j]) for j in range(count)] |
|
pos_sorted_logits = [sorted_logits[j].item() for j in range(count)] |
|
pos_word_list = list(zip(pos_sorted_words, pos_sorted_logits)) |
|
pos_sense_word_lists.append(pos_word_list) |
|
|
|
neg_sorted_words = [tokenizer.decode(sorted_indices[-j-1]) for j in range(count)] |
|
neg_sorted_logits = [sorted_logits[-j-1].item() for j in range(count)] |
|
neg_word_list = list(zip(neg_sorted_words, neg_sorted_logits)) |
|
neg_sense_word_lists.append(neg_word_list) |
|
|
|
pos_data = dict(zip(sense_names, pos_sense_word_lists)) |
|
pos_df = pd.DataFrame(index=[i for i in range(count)], |
|
columns=list(pos_data.keys())) |
|
for prop, word_list in pos_data.items(): |
|
for i, word_pair in enumerate(word_list): |
|
cell_value = "{} ({:.2f})".format(word_pair[0], word_pair[1]) |
|
pos_df.at[i, prop] = cell_value |
|
|
|
neg_data = dict(zip(sense_names, neg_sense_word_lists)) |
|
neg_df = pd.DataFrame(index=[i for i in range(count)], |
|
columns=list(neg_data.keys())) |
|
for prop, word_list in neg_data.items(): |
|
for i, word_pair in enumerate(word_list): |
|
cell_value = "{} ({:.2f})".format(word_pair[0], word_pair[1]) |
|
neg_df.at[i, prop] = cell_value |
|
|
|
return pos_df, neg_df, tokens |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(""" |
|
## Backpack visualization: senses lookup |
|
> Note: Backpack uses the GPT-2 tokenizer, which includes the space before a word as part of the token, so by default, a space character `' '` is added to the beginning of the word you look up. You can disable this by checking `Remove space before word`, but know this might cause strange behaviors like breaking `afraid` into `af` and `raid`, or `slight` into `s` and `light`. |
|
""") |
|
with gr.Row(): |
|
word = gr.Textbox(label="Word") |
|
token_breakdown = gr.Textbox(label="Token Breakdown (senses are for the first token only)") |
|
remove_space = gr.Checkbox(label="Remove space before word", default=False) |
|
count = gr.Slider(minimum=1, maximum=20, value=10, label="Top K", step=1) |
|
|
|
pos_outputs = gr.Dataframe(label="Highest Scoring Senses") |
|
neg_outputs = gr.Dataframe(label="Lowest Scoring Senses") |
|
gr.Examples( |
|
examples=["science", "afraid", "book", "slight"], |
|
inputs=[word], |
|
outputs=[pos_outputs, neg_outputs, token_breakdown], |
|
fn=visualize_word, |
|
|
|
) |
|
|
|
gr.Button("Look up").click( |
|
fn=visualize_word, |
|
inputs= [word, count, remove_space], |
|
outputs= [pos_outputs, neg_outputs, token_breakdown], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.launch(share=False) |
|
|
|
|