Spaces:
Sleeping
Sleeping
Keane Moraes
commited on
Commit
·
f76e4eb
1
Parent(s):
625fc77
threading changes
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ import whisper
|
|
14 |
import os, json
|
15 |
import math
|
16 |
import re
|
|
|
17 |
|
18 |
# Custom classes
|
19 |
from transcription import *
|
@@ -41,10 +42,12 @@ data_transcription = {"title":"", "text":""}
|
|
41 |
embeddings = []
|
42 |
text_chunks_lib = dict()
|
43 |
user_input = None
|
|
|
44 |
|
45 |
tldr = ""
|
46 |
summary = ""
|
47 |
takeaways = []
|
|
|
48 |
|
49 |
folder_name = "./tests"
|
50 |
input_accepted = False
|
@@ -61,6 +64,47 @@ st.write('It provides a summary, transcription, key insights, a mind map and a Q
|
|
61 |
|
62 |
bar = st.progress(0)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
# =========== SIDEBAR FOR GENERATION ===========
|
65 |
with st.sidebar:
|
66 |
youtube_link = st.text_input(label = "Type in your Youtube link", placeholder = "", key="url")
|
@@ -81,7 +125,7 @@ with st.sidebar:
|
|
81 |
|
82 |
if st.button("Start Analysis"):
|
83 |
|
84 |
-
#
|
85 |
if re.search(REGEXP_YOUTUBE_URL, youtube_link):
|
86 |
vte = VideoTranscription(youtube_link)
|
87 |
YOUTUBE_VIDEO_ID = youtube_link.split("=")[1]
|
@@ -89,13 +133,10 @@ with st.sidebar:
|
|
89 |
if not os.path.exists(folder_name):
|
90 |
os.mkdir(folder_name)
|
91 |
|
92 |
-
with st.spinner('Running
|
93 |
data_transcription = vte.transcribe()
|
94 |
segments = data_transcription['segments']
|
95 |
-
|
96 |
-
with open(f"{folder_name}/data.json", "w") as f:
|
97 |
-
json.dump(data_transcription, f, indent=4)
|
98 |
-
|
99 |
# PDF Transcription
|
100 |
elif pdf_file is not None:
|
101 |
pte = PDFTranscription(pdf_file)
|
@@ -103,7 +144,7 @@ with st.sidebar:
|
|
103 |
if not os.path.exists(folder_name):
|
104 |
os.mkdir(folder_name)
|
105 |
|
106 |
-
with st.spinner('Running
|
107 |
data_transcription = pte.transcribe()
|
108 |
segments = data_transcription['segments']
|
109 |
|
@@ -114,7 +155,7 @@ with st.sidebar:
|
|
114 |
if not os.path.exists(f""):
|
115 |
os.mkdir(folder_name)
|
116 |
|
117 |
-
with st.spinner('Running
|
118 |
data_transcription = ate.transcribe()
|
119 |
segments = data_transcription['segments']
|
120 |
|
@@ -124,49 +165,18 @@ with st.sidebar:
|
|
124 |
else:
|
125 |
st.error("Please type in your youtube link or upload the PDF")
|
126 |
st.experimental_rerun()
|
127 |
-
|
128 |
-
# Generate embeddings
|
129 |
-
if not os.path.exists(f"{folder_name}/word_embeddings.csv"):
|
130 |
-
for i, segment in enumerate(segments):
|
131 |
-
bar.progress(max(math.ceil((i/len(segments) * 50)), 1))
|
132 |
-
response = openai.Embedding.create(
|
133 |
-
input= segment["text"].strip(),
|
134 |
-
model="text-embedding-ada-002"
|
135 |
-
)
|
136 |
-
embeddings = response['data'][0]['embedding']
|
137 |
-
meta = {
|
138 |
-
"text": segment["text"].strip(),
|
139 |
-
"embedding": embeddings
|
140 |
-
}
|
141 |
-
data.append(meta)
|
142 |
-
|
143 |
-
pd.DataFrame(data).to_csv(f'{folder_name}/word_embeddings.csv')
|
144 |
-
else:
|
145 |
-
data = pd.read_csv(f'{folder_name}/word_embeddings.csv')
|
146 |
-
embeddings = data["embedding"]
|
147 |
|
148 |
-
bar.progress(75)
|
149 |
-
|
150 |
-
text_df = pd.DataFrame.from_dict({"title": [data_transcription["title"]], "text":[data_transcription["text"]]})
|
151 |
-
input_accepted = True
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
text_chunks.append(tc)
|
164 |
-
|
165 |
-
text_chunks_lib[title_entry] = text_chunks
|
166 |
-
|
167 |
-
# Generate key takeaways
|
168 |
-
key_engine = Keywords(title_entry)
|
169 |
-
keywords = key_engine.get_keywords(text_chunks_lib)
|
170 |
|
171 |
# Generate the summary
|
172 |
if gen_summary == 'Yes':
|
|
|
14 |
import os, json
|
15 |
import math
|
16 |
import re
|
17 |
+
from threading import Thread
|
18 |
|
19 |
# Custom classes
|
20 |
from transcription import *
|
|
|
42 |
embeddings = []
|
43 |
text_chunks_lib = dict()
|
44 |
user_input = None
|
45 |
+
title_entry = None
|
46 |
|
47 |
tldr = ""
|
48 |
summary = ""
|
49 |
takeaways = []
|
50 |
+
keywords = []
|
51 |
|
52 |
folder_name = "./tests"
|
53 |
input_accepted = False
|
|
|
64 |
|
65 |
bar = st.progress(0)
|
66 |
|
67 |
+
def generate_word_embeddings():
|
68 |
+
if not os.path.exists(f"{folder_name}/word_embeddings.csv"):
|
69 |
+
for i, segment in enumerate(segments):
|
70 |
+
bar.progress(max(math.ceil((i/len(segments) * 50)), 1))
|
71 |
+
response = openai.Embedding.create(
|
72 |
+
input= segment["text"].strip(),
|
73 |
+
model="text-embedding-ada-002"
|
74 |
+
)
|
75 |
+
embeddings = response['data'][0]['embedding']
|
76 |
+
meta = {
|
77 |
+
"text": segment["text"].strip(),
|
78 |
+
"embedding": embeddings
|
79 |
+
}
|
80 |
+
data.append(meta)
|
81 |
+
|
82 |
+
pd.DataFrame(data).to_csv(f'{folder_name}/word_embeddings.csv')
|
83 |
+
else:
|
84 |
+
data = pd.read_csv(f'{folder_name}/word_embeddings.csv')
|
85 |
+
|
86 |
+
|
87 |
+
def generate_text_chunks_lib():
|
88 |
+
text_df = pd.DataFrame.from_dict({"title": [data_transcription["title"]], "text":[data_transcription["text"]]})
|
89 |
+
input_accepted = True
|
90 |
+
|
91 |
+
# For each body of text, create text chunks of a certain token size required for the transformer
|
92 |
+
title_entry = text_df['title'][0]
|
93 |
+
print(title_entry)
|
94 |
+
for i in range(0, len(text_df)):
|
95 |
+
nested_sentences = md.create_nest_sentences(document=text_df['text'][i], token_max_length=1024)
|
96 |
+
# For each chunk of sentences (within the token max)
|
97 |
+
text_chunks = []
|
98 |
+
for n in range(0, len(nested_sentences)):
|
99 |
+
tc = " ".join(map(str, nested_sentences[n]))
|
100 |
+
text_chunks.append(tc)
|
101 |
+
|
102 |
+
text_chunks_lib[title_entry] = text_chunks
|
103 |
+
|
104 |
+
# Generate key takeaways
|
105 |
+
key_engine = Keywords(title_entry)
|
106 |
+
keywords = key_engine.get_keywords(text_chunks_lib)
|
107 |
+
|
108 |
# =========== SIDEBAR FOR GENERATION ===========
|
109 |
with st.sidebar:
|
110 |
youtube_link = st.text_input(label = "Type in your Youtube link", placeholder = "", key="url")
|
|
|
125 |
|
126 |
if st.button("Start Analysis"):
|
127 |
|
128 |
+
# Youtube Transcription
|
129 |
if re.search(REGEXP_YOUTUBE_URL, youtube_link):
|
130 |
vte = VideoTranscription(youtube_link)
|
131 |
YOUTUBE_VIDEO_ID = youtube_link.split("=")[1]
|
|
|
133 |
if not os.path.exists(folder_name):
|
134 |
os.mkdir(folder_name)
|
135 |
|
136 |
+
with st.spinner('Running transcription...'):
|
137 |
data_transcription = vte.transcribe()
|
138 |
segments = data_transcription['segments']
|
139 |
+
|
|
|
|
|
|
|
140 |
# PDF Transcription
|
141 |
elif pdf_file is not None:
|
142 |
pte = PDFTranscription(pdf_file)
|
|
|
144 |
if not os.path.exists(folder_name):
|
145 |
os.mkdir(folder_name)
|
146 |
|
147 |
+
with st.spinner('Running transcription...'):
|
148 |
data_transcription = pte.transcribe()
|
149 |
segments = data_transcription['segments']
|
150 |
|
|
|
155 |
if not os.path.exists(f""):
|
156 |
os.mkdir(folder_name)
|
157 |
|
158 |
+
with st.spinner('Running transcription...'):
|
159 |
data_transcription = ate.transcribe()
|
160 |
segments = data_transcription['segments']
|
161 |
|
|
|
165 |
else:
|
166 |
st.error("Please type in your youtube link or upload the PDF")
|
167 |
st.experimental_rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
# Generate embeddings
|
171 |
+
thread1 = Thread(target=generate_word_embeddings)
|
172 |
+
thread1.start()
|
173 |
+
# Generate text chunks
|
174 |
+
thread2 = Thread(target=generate_text_chunks_lib)
|
175 |
+
thread2.start()
|
176 |
+
|
177 |
+
# Wait for them to complete
|
178 |
+
thread1.join()
|
179 |
+
thread2.join()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
# Generate the summary
|
182 |
if gen_summary == 'Yes':
|