Spaces:
Build error
Build error
File size: 2,797 Bytes
d9ce745 1981c78 10d9795 d9ce745 22ca17f 15ea0fb 22ca17f 15ea0fb 22ca17f 15ea0fb 22ca17f 8275bd6 22ca17f d9ce745 1981c78 04b8ab3 10d9795 232a10d 1981c78 28e14c5 232a10d 1981c78 232a10d 28e14c5 1981c78 04b8ab3 1981c78 10296ed ca564a1 10296ed ca564a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import streamlit as st
from topics import TopicModelling
import mdforest
import utils
import os
col1, mid, col2 = st.columns([30,5,20])
with col1:
st.title("Welcome to Embeddr")
st.markdown("This is a demo of _one of the many_ use cases for an embedding of all your notes. This application lets you find **common ideas** between any two notes.")
st.markdown("You can upload two markdown files and the application will find the common ideas between them. It will generate insights based on the common ideas.")
st.markdown("**I will be building a better embedding model soon.** Stay tuned for updates. This is just a demo of what is possible with a good embedding model.")
with col2:
st.markdown("### [Sign up for updates](https://embeddr.my.canva.site/)")
st.image("media/qrcode.png")
st.markdown("---")
st.markdown("## Drop in two documents and get insights between them.")
col3, mid2, col4 = st.columns([40,5,40])
with col3:
st.markdown("### Drop the first document")
file1 = st.file_uploader("Upload a file", type=["md", "txt"], key="first")
with col4:
st.markdown("### Drop the second document")
file2 = st.file_uploader("Upload a file", type=["md", "txt"], key="second")
topics = {}
results = {}
embedder = utils.load_model()
nlp = utils.load_nlp()
if not os.path.exists("./prompter/"):
os.mkdir("./prompter/")
if file1 is not None and file2 is not None:
input_text1 = file1.read().decode("utf-8")
input_text2 = file2.read().decode("utf-8")
cleaned_text1 = mdforest.clean_markdown(input_text1)
cleaned_text2 = mdforest.clean_markdown(input_text2)
st.title("Generating insights")
with st.spinner('Generating insights...'):
insight1 = TopicModelling(cleaned_text1)
insight2 = TopicModelling(cleaned_text2)
keywords1, concepts1 = insight1.generate_topics()
topics['insight1'] = [keywords1, concepts1]
keywords2, concepts2 = insight2.generate_topics()
topics['insight2'] = [keywords2, concepts2]
with st.spinner("Flux capacitor is fluxing..."):
clutered = utils.cluster_based_on_topics(nlp, embedder, cleaned_text1, cleaned_text2, num_clusters=3)
with st.spinner("Polishing up"):
results = utils.generate_insights(topics, file1.name, file2.name, cleaned_text1, cleaned_text2, clutered)
st.success("Done!")
st.title("Insights generated")
st.markdown("### The following insights are common to both documents.")
for result in results:
with st.expander(result["name"]):
st.write(result["description"])
st.markdown("Related Concepts:")
for insight in result["concepts"]:
st.markdown(f" - {insight}") |