File size: 8,579 Bytes
abaceb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
from torch import nn
from torch.nn import functional as F
import math

from .conv import Conv2dTranspose, Conv2d, nonorm_Conv2d

class Wav2Lip(nn.Module):
    def __init__(self):
        super(Wav2Lip, self).__init__()

        self.face_encoder_blocks = nn.ModuleList([
            nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3)), # 96,96

            nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1), # 48,48
            Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True)),

            nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1),    # 24,24
            Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True)),

            nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1),   # 12,12
            Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True)),

            nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1),       # 6,6
            Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True)),

            nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1),     # 3,3
            Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),),
            
            nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=1, padding=0),     # 1, 1
            Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])

        self.audio_encoder = nn.Sequential(
            Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
            Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
            Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
            Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
            Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
            Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)

        self.face_decoder_blocks = nn.ModuleList([
            nn.Sequential(Conv2d(512, 512, kernel_size=1, stride=1, padding=0),),

            nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=1, padding=0), # 3,3
            Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),),

            nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
            Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),), # 6, 6

            nn.Sequential(Conv2dTranspose(768, 384, kernel_size=3, stride=2, padding=1, output_padding=1),
            Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),), # 12, 12

            nn.Sequential(Conv2dTranspose(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
            Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),), # 24, 24

            nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1), 
            Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),), # 48, 48

            nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
            Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),),]) # 96,96

        self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1),
            nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
            nn.Sigmoid()) 

    def forward(self, audio_sequences, face_sequences):
        # audio_sequences = (B, T, 1, 80, 16)
        B = audio_sequences.size(0)

        input_dim_size = len(face_sequences.size())
        if input_dim_size > 4:
            audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
            face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)

        audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1

        feats = []
        x = face_sequences
        for f in self.face_encoder_blocks:
            x = f(x)
            feats.append(x)

        x = audio_embedding
        for f in self.face_decoder_blocks:
            x = f(x)
            try:
                x = torch.cat((x, feats[-1]), dim=1)
            except Exception as e:
                print(x.size())
                print(feats[-1].size())
                raise e
            
            feats.pop()

        x = self.output_block(x)

        if input_dim_size > 4:
            x = torch.split(x, B, dim=0) # [(B, C, H, W)]
            outputs = torch.stack(x, dim=2) # (B, C, T, H, W)

        else:
            outputs = x
            
        return outputs

class Wav2Lip_disc_qual(nn.Module):
    def __init__(self):
        super(Wav2Lip_disc_qual, self).__init__()

        self.face_encoder_blocks = nn.ModuleList([
            nn.Sequential(nonorm_Conv2d(3, 32, kernel_size=7, stride=1, padding=3)), # 48,96

            nn.Sequential(nonorm_Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=2), # 48,48
            nonorm_Conv2d(64, 64, kernel_size=5, stride=1, padding=2)),

            nn.Sequential(nonorm_Conv2d(64, 128, kernel_size=5, stride=2, padding=2),    # 24,24
            nonorm_Conv2d(128, 128, kernel_size=5, stride=1, padding=2)),

            nn.Sequential(nonorm_Conv2d(128, 256, kernel_size=5, stride=2, padding=2),   # 12,12
            nonorm_Conv2d(256, 256, kernel_size=5, stride=1, padding=2)),

            nn.Sequential(nonorm_Conv2d(256, 512, kernel_size=3, stride=2, padding=1),       # 6,6
            nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1)),

            nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1),     # 3,3
            nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1),),
            
            nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=0),     # 1, 1
            nonorm_Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])

        self.binary_pred = nn.Sequential(nn.Conv2d(512, 1, kernel_size=1, stride=1, padding=0), nn.Sigmoid())
        self.label_noise = .0

    def get_lower_half(self, face_sequences):
        return face_sequences[:, :, face_sequences.size(2)//2:]

    def to_2d(self, face_sequences):
        B = face_sequences.size(0)
        face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
        return face_sequences

    def perceptual_forward(self, false_face_sequences):
        false_face_sequences = self.to_2d(false_face_sequences)
        false_face_sequences = self.get_lower_half(false_face_sequences)

        false_feats = false_face_sequences
        for f in self.face_encoder_blocks:
            false_feats = f(false_feats)

        false_pred_loss = F.binary_cross_entropy(self.binary_pred(false_feats).view(len(false_feats), -1), 
                                        torch.ones((len(false_feats), 1)).cuda())

        return false_pred_loss

    def forward(self, face_sequences):
        face_sequences = self.to_2d(face_sequences)
        face_sequences = self.get_lower_half(face_sequences)

        x = face_sequences
        for f in self.face_encoder_blocks:
            x = f(x)

        return self.binary_pred(x).view(len(x), -1)