File size: 1,549 Bytes
abaceb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import cv2
from facexlib.utils.face_restoration_helper import FaceRestoreHelper

from gfpgan.archs.gfpganv1_arch import GFPGANv1
from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean
from gfpgan.utils import GFPGANer


def test_gfpganer():
    # initialize with the clean model
    restorer = GFPGANer(
        model_path='experiments/pretrained_models/GFPGANCleanv1-NoCE-C2.pth',
        upscale=2,
        arch='clean',
        channel_multiplier=2,
        bg_upsampler=None)
    # test attribute
    assert isinstance(restorer.gfpgan, GFPGANv1Clean)
    assert isinstance(restorer.face_helper, FaceRestoreHelper)

    # initialize with the original model
    restorer = GFPGANer(
        model_path='experiments/pretrained_models/GFPGANv1.pth',
        upscale=2,
        arch='original',
        channel_multiplier=1,
        bg_upsampler=None)
    # test attribute
    assert isinstance(restorer.gfpgan, GFPGANv1)
    assert isinstance(restorer.face_helper, FaceRestoreHelper)

    # ------------------ test enhance ---------------- #
    img = cv2.imread('tests/data/gt/00000000.png', cv2.IMREAD_COLOR)
    result = restorer.enhance(img, has_aligned=False, paste_back=True)
    assert result[0][0].shape == (512, 512, 3)
    assert result[1][0].shape == (512, 512, 3)
    assert result[2].shape == (1024, 1024, 3)

    # with has_aligned=True
    result = restorer.enhance(img, has_aligned=True, paste_back=False)
    assert result[0][0].shape == (512, 512, 3)
    assert result[1][0].shape == (512, 512, 3)
    assert result[2] is None