Spaces:
Runtime error
Runtime error
File size: 3,733 Bytes
abaceb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# general settings
name: train_GFPGANv1_512_simple
model_type: GFPGANModel
num_gpu: auto # officially, we use 4 GPUs
manual_seed: 0
# dataset and data loader settings
datasets:
train:
name: FFHQ
type: FFHQDegradationDataset
# dataroot_gt: datasets/ffhq/ffhq_512.lmdb
dataroot_gt: datasets/ffhq/ffhq_512
io_backend:
# type: lmdb
type: disk
use_hflip: true
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]
out_size: 512
blur_kernel_size: 41
kernel_list: ['iso', 'aniso']
kernel_prob: [0.5, 0.5]
blur_sigma: [0.1, 10]
downsample_range: [0.8, 8]
noise_range: [0, 20]
jpeg_range: [60, 100]
# color jitter and gray
color_jitter_prob: 0.3
color_jitter_shift: 20
color_jitter_pt_prob: 0.3
gray_prob: 0.01
# If you do not want colorization, please set
# color_jitter_prob: ~
# color_jitter_pt_prob: ~
# gray_prob: 0.01
# gt_gray: True
# data loader
use_shuffle: true
num_worker_per_gpu: 6
batch_size_per_gpu: 3
dataset_enlarge_ratio: 1
prefetch_mode: ~
val:
# Please modify accordingly to use your own validation
# Or comment the val block if do not need validation during training
name: validation
type: PairedImageDataset
dataroot_lq: datasets/faces/validation/input
dataroot_gt: datasets/faces/validation/reference
io_backend:
type: disk
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]
scale: 1
# network structures
network_g:
type: GFPGANv1
out_size: 512
num_style_feat: 512
channel_multiplier: 1
resample_kernel: [1, 3, 3, 1]
decoder_load_path: experiments/pretrained_models/StyleGAN2_512_Cmul1_FFHQ_B12G4_scratch_800k.pth
fix_decoder: true
num_mlp: 8
lr_mlp: 0.01
input_is_latent: true
different_w: true
narrow: 1
sft_half: true
network_d:
type: StyleGAN2Discriminator
out_size: 512
channel_multiplier: 1
resample_kernel: [1, 3, 3, 1]
# path
path:
pretrain_network_g: ~
param_key_g: params_ema
strict_load_g: ~
pretrain_network_d: ~
resume_state: ~
# training settings
train:
optim_g:
type: Adam
lr: !!float 2e-3
optim_d:
type: Adam
lr: !!float 2e-3
optim_component:
type: Adam
lr: !!float 2e-3
scheduler:
type: MultiStepLR
milestones: [600000, 700000]
gamma: 0.5
total_iter: 800000
warmup_iter: -1 # no warm up
# losses
# pixel loss
pixel_opt:
type: L1Loss
loss_weight: !!float 1e-1
reduction: mean
# L1 loss used in pyramid loss, component style loss and identity loss
L1_opt:
type: L1Loss
loss_weight: 1
reduction: mean
# image pyramid loss
pyramid_loss_weight: 1
remove_pyramid_loss: 50000
# perceptual loss (content and style losses)
perceptual_opt:
type: PerceptualLoss
layer_weights:
# before relu
'conv1_2': 0.1
'conv2_2': 0.1
'conv3_4': 1
'conv4_4': 1
'conv5_4': 1
vgg_type: vgg19
use_input_norm: true
perceptual_weight: !!float 1
style_weight: 50
range_norm: true
criterion: l1
# gan loss
gan_opt:
type: GANLoss
gan_type: wgan_softplus
loss_weight: !!float 1e-1
# r1 regularization for discriminator
r1_reg_weight: 10
net_d_iters: 1
net_d_init_iters: 0
net_d_reg_every: 16
# validation settings
val:
val_freq: !!float 5e3
save_img: true
metrics:
psnr: # metric name
type: calculate_psnr
crop_border: 0
test_y_channel: false
# logging settings
logger:
print_freq: 100
save_checkpoint_freq: !!float 5e3
use_tb_logger: true
wandb:
project: ~
resume_id: ~
# dist training settings
dist_params:
backend: nccl
port: 29500
find_unused_parameters: true
|