Spaces:
Runtime error
Runtime error
File size: 9,156 Bytes
abaceb0 9e504bb abaceb0 9e504bb abaceb0 9e504bb abaceb0 9e504bb abaceb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
from os import listdir, path
import numpy as np
import scipy, cv2, os, sys, argparse
import dlib, json, subprocess
from tqdm import tqdm
from glob import glob
import torch
sys.path.append('../')
import audio
import face_detection
from models import Wav2Lip
parser = argparse.ArgumentParser(description='Code to generate results on ReSyncED evaluation set')
parser.add_argument('--mode', type=str,
help='random | dubbed | tts', required=True)
parser.add_argument('--filelist', type=str,
help='Filepath of filelist file to read', default=None)
parser.add_argument('--results_dir', type=str, help='Folder to save all results into',
required=True)
parser.add_argument('--data_root', type=str, required=True)
parser.add_argument('--checkpoint_path', type=str,
help='Name of saved checkpoint to load weights from', required=True)
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0],
help='Padding (top, bottom, left, right)')
parser.add_argument('--face_det_batch_size', type=int,
help='Single GPU batch size for face detection', default=16)
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip', default=128)
parser.add_argument('--face_res', help='Approximate resolution of the face at which to test', default=180)
parser.add_argument('--min_frame_res', help='Do not downsample further below this frame resolution', default=480)
parser.add_argument('--max_frame_res', help='Downsample to at least this frame resolution', default=720)
# parser.add_argument('--resize_factor', default=1, type=int)
args = parser.parse_args()
args.img_size = 96
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def rescale_frames(images):
rect = detector.get_detections_for_batch(np.array([images[0]]))[0]
if rect is None:
raise ValueError('Face not detected!')
h, w = images[0].shape[:-1]
x1, y1, x2, y2 = rect
face_size = max(np.abs(y1 - y2), np.abs(x1 - x2))
diff = np.abs(face_size - args.face_res)
for factor in range(2, 16):
downsampled_res = face_size // factor
if min(h//factor, w//factor) < args.min_frame_res: break
if np.abs(downsampled_res - args.face_res) >= diff: break
factor -= 1
if factor == 1: return images
return [cv2.resize(im, (im.shape[1]//(factor), im.shape[0]//(factor))) for im in images]
def face_detect(images):
batch_size = args.face_det_batch_size
images = rescale_frames(images)
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = args.pads
for rect, image in zip(predictions, images):
if rect is None:
raise ValueError('Face not detected!')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = get_smoothened_boxes(np.array(results), T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
return results, images
def datagen(frames, face_det_results, mels):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
for i, m in enumerate(mels):
if i >= len(frames): raise ValueError('Equal or less lengths only')
frame_to_save = frames[i].copy()
face, coords, valid_frame = face_det_results[i].copy()
if not valid_frame:
continue
face = cv2.resize(face, (args.img_size, args.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= args.wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
def increase_frames(frames, l):
## evenly duplicating frames to increase length of video
while len(frames) < l:
dup_every = float(l) / len(frames)
final_frames = []
next_duplicate = 0.
for i, f in enumerate(frames):
final_frames.append(f)
if int(np.ceil(next_duplicate)) == i:
final_frames.append(f)
next_duplicate += dup_every
frames = final_frames
return frames[:l]
mel_step_size = 16
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} for inference.'.format(device))
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
def _load(checkpoint_path):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(device)
return model.eval()
model = load_model(args.checkpoint_path)
def main():
if not os.path.isdir(args.results_dir): os.makedirs(args.results_dir)
if args.mode == 'dubbed':
files = listdir(args.data_root)
lines = ['{} {}'.format(f, f) for f in files]
else:
assert args.filelist is not None
with open(args.filelist, 'r') as filelist:
lines = filelist.readlines()
for idx, line in enumerate(tqdm(lines)):
video, audio_src = line.strip().split()
audio_src = os.path.join(args.data_root, audio_src)
video = os.path.join(args.data_root, video)
command = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'.format(audio_src, '/tmp/temp.wav')
subprocess.call(command, shell=True)
temp_audio = '/tmp/temp.wav'
wav = audio.load_wav(temp_audio, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError('Mel contains nan!')
video_stream = cv2.VideoCapture(video)
fps = video_stream.get(cv2.CAP_PROP_FPS)
mel_idx_multiplier = 80./fps
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if min(frame.shape[:-1]) > args.max_frame_res:
h, w = frame.shape[:-1]
scale_factor = min(h, w) / float(args.max_frame_res)
h = int(h/scale_factor)
w = int(w/scale_factor)
frame = cv2.resize(frame, (w, h))
full_frames.append(frame)
mel_chunks = []
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
if len(full_frames) < len(mel_chunks):
if args.mode == 'tts':
full_frames = increase_frames(full_frames, len(mel_chunks))
else:
raise ValueError('#Frames, audio length mismatch')
else:
full_frames = full_frames[:len(mel_chunks)]
try:
face_det_results, full_frames = face_detect(full_frames.copy())
except ValueError as e:
continue
batch_size = args.wav2lip_batch_size
gen = datagen(full_frames.copy(), face_det_results, mel_chunks)
for i, (img_batch, mel_batch, frames, coords) in enumerate(gen):
if i == 0:
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('/tmp/result.avi',
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
for pl, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
pl = cv2.resize(pl.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = pl
out.write(f)
out.release()
vid = os.path.join(args.results_dir, '{}.mp4'.format(idx))
command = 'ffmpeg -loglevel panic -y -i {} -i {} -strict -2 -q:v 1 {}'.format('/tmp/temp.wav',
'/tmp/result.avi', vid)
subprocess.call(command, shell=True)
if __name__ == '__main__':
main()
|