Spaces:
Runtime error
Runtime error
import argparse | |
import cv2 | |
import glob | |
import numpy as np | |
import os | |
import torch | |
from basicsr.utils import imwrite | |
from tqdm import tqdm | |
from gfpgan import GFPGANer | |
def main(): | |
"""Inference demo for GFPGAN (for users). | |
""" | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
'-i', | |
'--input', | |
type=str, | |
default='inputs/whole_imgs', | |
help='Input image or folder. Default: inputs/whole_imgs') | |
parser.add_argument('-o', '--output', type=str, default='results', help='Output folder. Default: results') | |
# we use version to select models, which is more user-friendly | |
parser.add_argument( | |
'-v', '--version', type=str, default='1.3', help='GFPGAN model version. Option: 1 | 1.2 | 1.3. Default: 1.3') | |
parser.add_argument( | |
'-s', '--upscale', type=int, default=2, help='The final upsampling scale of the image. Default: 2') | |
parser.add_argument( | |
'--bg_upsampler', type=str, default='realesrgan', help='background upsampler. Default: realesrgan') | |
parser.add_argument( | |
'--bg_tile', | |
type=int, | |
default=400, | |
help='Tile size for background sampler, 0 for no tile during testing. Default: 400') | |
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces') | |
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face') | |
parser.add_argument('--aligned', action='store_true', help='Input are aligned faces') | |
parser.add_argument('--save_faces', default=False, help='Save the restored faces') | |
parser.add_argument( | |
'--ext', | |
type=str, | |
default='auto', | |
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto') | |
args = parser.parse_args() | |
args = parser.parse_args() | |
# ------------------------ input & output ------------------------ | |
if args.input.endswith('/'): | |
args.input = args.input[:-1] | |
if os.path.isfile(args.input): | |
img_list = [args.input] | |
else: | |
img_list = sorted(glob.glob(os.path.join(args.input, '*'))) | |
os.makedirs(args.output, exist_ok=True) | |
# ------------------------ set up background upsampler ------------------------ | |
if args.bg_upsampler == 'realesrgan': | |
if not torch.cuda.is_available(): # CPU | |
import warnings | |
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. ' | |
'If you really want to use it, please modify the corresponding codes.') | |
bg_upsampler = None | |
else: | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from realesrgan import RealESRGANer | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) | |
bg_upsampler = RealESRGANer( | |
scale=2, | |
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth', | |
model=model, | |
tile=args.bg_tile, | |
tile_pad=10, | |
pre_pad=0, | |
half=True) # need to set False in CPU mode | |
else: | |
bg_upsampler = None | |
# ------------------------ set up GFPGAN restorer ------------------------ | |
if args.version == '1': | |
arch = 'original' | |
channel_multiplier = 1 | |
model_name = 'GFPGANv1' | |
elif args.version == '1.2': | |
arch = 'clean' | |
channel_multiplier = 2 | |
model_name = 'GFPGANCleanv1-NoCE-C2' | |
elif args.version == '1.3': | |
arch = 'clean' | |
channel_multiplier = 2 | |
model_name = 'GFPGANv1.3' | |
else: | |
raise ValueError(f'Wrong model version {args.version}.') | |
# determine model paths | |
model_path = os.path.join('experiments/pretrained_models', model_name + '.pth') | |
if not os.path.isfile(model_path): | |
model_path = os.path.join('realesrgan/weights', model_name + '.pth') | |
if not os.path.isfile(model_path): | |
raise ValueError(f'Model {model_name} does not exist.') | |
restorer = GFPGANer( | |
model_path=model_path, | |
upscale=args.upscale, | |
arch=arch, | |
channel_multiplier=channel_multiplier, | |
bg_upsampler=bg_upsampler) | |
# ------------------------ restore ------------------------ | |
for img_path in tqdm(img_list): | |
# read image | |
img_name = os.path.basename(img_path) | |
print(f'Processing {img_name} ...') | |
basename, ext = os.path.splitext(img_name) | |
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR) | |
# restore faces and background if necessary | |
cropped_faces, restored_faces, restored_img = restorer.enhance( | |
input_img, has_aligned=args.aligned, only_center_face=args.only_center_face, paste_back=True) | |
# save faces | |
if(args.save_faces): | |
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)): | |
# save cropped face | |
save_crop_path = os.path.join(args.output, 'cropped_faces', f'{basename}_{idx:02d}.png') | |
imwrite(cropped_face, save_crop_path) | |
# save restored face | |
if args.suffix is not None: | |
save_face_name = f'{basename}_{idx:02d}_{args.suffix}.png' | |
else: | |
save_face_name = f'{basename}_{idx:02d}.png' | |
save_restore_path = os.path.join(args.output, 'restored_faces', save_face_name) | |
imwrite(restored_face, save_restore_path) | |
# save comparison image | |
cmp_img = np.concatenate((cropped_face, restored_face), axis=1) | |
imwrite(cmp_img, os.path.join(args.output, 'cmp', f'{basename}_{idx:02d}.png')) | |
# save restored img | |
if restored_img is not None: | |
if args.ext == 'auto': | |
extension = ext[1:] | |
else: | |
extension = args.ext | |
if args.suffix is not None: | |
save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}_{args.suffix}.{extension}') | |
else: | |
save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}.{extension}') | |
imwrite(restored_img, save_restore_path) | |
print(f'Results are in the [{args.output}] folder.') | |
if __name__ == '__main__': | |
main() | |