wav2lip-gfpgan / gfpgan /inference_gfpgan.py
lorneluo's picture
read text from .txt
11a4759
raw
history blame
6.73 kB
import argparse
import cv2
import glob
import numpy as np
import os
import torch
from basicsr.utils import imwrite
from tqdm import tqdm
from gfpgan import GFPGANer
root_dir = os.path.dirname(os.path.abspath(__file__))
def main():
"""Inference demo for GFPGAN (for users).
"""
parser = argparse.ArgumentParser()
parser.add_argument(
'-i',
'--input',
type=str,
default='inputs/whole_imgs',
help='Input image or folder. Default: inputs/whole_imgs')
parser.add_argument('-o', '--output', type=str, default='results', help='Output folder. Default: results')
# we use version to select models, which is more user-friendly
parser.add_argument(
'-v', '--version', type=str, default='1.3', help='GFPGAN model version. Option: 1 | 1.2 | 1.3. Default: 1.3')
parser.add_argument(
'-s', '--upscale', type=int, default=2, help='The final upsampling scale of the image. Default: 2')
parser.add_argument(
'--bg_upsampler', type=str, default='realesrgan', help='background upsampler. Default: realesrgan')
parser.add_argument(
'--bg_tile',
type=int,
default=400,
help='Tile size for background sampler, 0 for no tile during testing. Default: 400')
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces')
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face')
parser.add_argument('--aligned', action='store_true', help='Input are aligned faces')
parser.add_argument('--save_faces', default=False, help='Save the restored faces')
parser.add_argument(
'--ext',
type=str,
default='auto',
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto')
args = parser.parse_args()
# ------------------------ input & output ------------------------
if args.input.endswith('/'):
args.input = args.input[:-1]
assert os.path.isdir(args.input), f'Input folder {args.input} not exist.'
os.makedirs(args.output, exist_ok=True)
if os.path.isfile(args.input):
img_list = [args.input]
else:
img_list = sorted(glob.glob(os.path.join(args.input, '*')))
os.makedirs(args.output, exist_ok=True)
# ------------------------ set up background upsampler ------------------------
if args.bg_upsampler == 'realesrgan':
if not torch.cuda.is_available(): # CPU
import warnings
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. '
'If you really want to use it, please modify the corresponding codes.')
bg_upsampler = None
else:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
bg_upsampler = RealESRGANer(
scale=2,
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
model=model,
tile=args.bg_tile,
tile_pad=10,
pre_pad=0,
half=True) # need to set False in CPU mode
else:
bg_upsampler = None
# ------------------------ set up GFPGAN restorer ------------------------
if args.version == '1':
arch = 'original'
channel_multiplier = 1
model_name = 'GFPGANv1'
elif args.version == '1.2':
arch = 'clean'
channel_multiplier = 2
model_name = 'GFPGANCleanv1-NoCE-C2'
elif args.version == '1.3':
arch = 'clean'
channel_multiplier = 2
model_name = 'GFPGANv1.3'
elif args.version == '1.4':
arch = 'clean'
channel_multiplier = 2
model_name = 'GFPGANv1.4'
else:
raise ValueError(f'Wrong model version {args.version}.')
# determine model paths
model_path = os.path.join(root_dir, 'experiments/pretrained_models', model_name + '.pth')
if not os.path.isfile(model_path):
model_path = os.path.join(root_dir, 'realesrgan/weights', model_name + '.pth')
if not os.path.isfile(model_path):
raise ValueError(f'Model {model_name} does not exist.')
restorer = GFPGANer(
model_path=model_path,
upscale=args.upscale,
arch=arch,
channel_multiplier=channel_multiplier,
bg_upsampler=bg_upsampler)
# ------------------------ restore ------------------------
for img_path in tqdm(img_list):
# read image
img_name = os.path.basename(img_path)
# print(f'Processing {img_name} ...')
basename, ext = os.path.splitext(img_name)
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
# restore faces and background if necessary
cropped_faces, restored_faces, restored_img = restorer.enhance(
input_img, has_aligned=args.aligned, only_center_face=args.only_center_face, paste_back=True)
# save faces
if (args.save_faces):
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)):
# save cropped face
save_crop_path = os.path.join(args.output, 'cropped_faces', f'{basename}_{idx:02d}.png')
imwrite(cropped_face, save_crop_path)
# save restored face
if args.suffix is not None:
save_face_name = f'{basename}_{idx:02d}_{args.suffix}.png'
else:
save_face_name = f'{basename}_{idx:02d}.png'
save_restore_path = os.path.join(args.output, 'restored_faces', save_face_name)
imwrite(restored_face, save_restore_path)
# save comparison image
cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
imwrite(cmp_img, os.path.join(args.output, 'cmp', f'{basename}_{idx:02d}.png'))
# save restored img
if restored_img is not None:
if args.ext == 'auto':
extension = ext[1:]
else:
extension = args.ext
if args.suffix is not None:
save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}_{args.suffix}.{extension}')
else:
save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}.{extension}')
imwrite(restored_img, save_restore_path)
print(f'Results are in the [{args.output}] folder.')
if __name__ == '__main__':
main()