from os import listdir, path import numpy as np import scipy, cv2, os, sys, argparse, audio import json, subprocess, random, string from tqdm import tqdm from glob import glob import torch, face_detection from models import Wav2Lip import platform parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models') parser.add_argument('--checkpoint_path', type=str, help='Name of saved checkpoint to load weights from', required=True) parser.add_argument('--face', type=str, help='Filepath of video/image that contains faces to use', required=True) parser.add_argument('--audio', type=str, help='Filepath of video/audio file to use as raw audio source', required=True) parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.', default='results/result_voice.mp4') parser.add_argument('--static', type=bool, help='If True, then use only first video frame for inference', default=False) parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', default=25., required=False) parser.add_argument('--pads', nargs='+', type=int, default=[0, 20, 0, 0], help='Padding (top, bottom, left, right). Please adjust to include chin at least') parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=16) parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=128) parser.add_argument('--resize_factor', default=1, type=int, help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p') parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1], help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. ' 'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width') parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1], help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.' 'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).') parser.add_argument('--rotate', default=False, action='store_true', help='Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg.' 'Use if you get a flipped result, despite feeding a normal looking video') parser.add_argument('--nosmooth', default=False, action='store_true', help='Prevent smoothing face detections over a short temporal window') args = parser.parse_args() args.img_size = 96 if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']: args.static = True folder_path = os.path.dirname(args.outfile) def get_smoothened_boxes(boxes, T): for i in range(len(boxes)): if i + T > len(boxes): window = boxes[len(boxes) - T:] else: window = boxes[i: i + T] boxes[i] = np.mean(window, axis=0) return boxes def face_detect(images): detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device=device) batch_size = args.face_det_batch_size while 1: predictions = [] try: for i in tqdm(range(0, len(images), batch_size)): predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size]))) except RuntimeError: if batch_size == 1: raise RuntimeError( 'Image too big to run face detection on GPU. Please use the --resize_factor argument') batch_size //= 2 print('Recovering from OOM error; New batch size: {}'.format(batch_size)) continue break results = [] pady1, pady2, padx1, padx2 = args.pads for rect, image in zip(predictions, images): if rect is None: cv2.imwrite(f'{folder_path}/faulty_frame.jpg', image) # check this frame where the face was not detected. raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') y1 = max(0, rect[1] - pady1) y2 = min(image.shape[0], rect[3] + pady2) x1 = max(0, rect[0] - padx1) x2 = min(image.shape[1], rect[2] + padx2) results.append([x1, y1, x2, y2]) boxes = np.array(results) if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5) results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] del detector return results def datagen(frames, mels): img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] if args.box[0] == -1: if not args.static: face_det_results = face_detect(frames) # BGR2RGB for CNN face detection else: face_det_results = face_detect([frames[0]]) else: print('Using the specified bounding box instead of face detection...') y1, y2, x1, x2 = args.box face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames] for i, m in enumerate(mels): idx = 0 if args.static else i % len(frames) frame_to_save = frames[idx].copy() face, coords = face_det_results[idx].copy() face = cv2.resize(face, (args.img_size, args.img_size)) img_batch.append(face) mel_batch.append(m) frame_batch.append(frame_to_save) coords_batch.append(coords) if len(img_batch) >= args.wav2lip_batch_size: img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) img_masked = img_batch.copy() img_masked[:, args.img_size // 2:] = 0 img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) yield img_batch, mel_batch, frame_batch, coords_batch img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] if len(img_batch) > 0: img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) img_masked = img_batch.copy() img_masked[:, args.img_size // 2:] = 0 img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) yield img_batch, mel_batch, frame_batch, coords_batch mel_step_size = 16 device = 'cuda' if torch.cuda.is_available() else 'cpu' print('Using {} for inference.'.format(device)) def _load(checkpoint_path): if device == 'cuda': checkpoint = torch.load(checkpoint_path) else: checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) return checkpoint def load_model(path): model = Wav2Lip() print("Load checkpoint from: {}".format(path)) checkpoint = _load(path) s = checkpoint["state_dict"] new_s = {} for k, v in s.items(): new_s[k.replace('module.', '')] = v model.load_state_dict(new_s) model = model.to(device) return model.eval() def main(): if not os.path.isfile(args.face): raise ValueError('--face argument must be a valid path to video/image file') elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']: full_frames = [cv2.imread(args.face)] fps = args.fps else: video_stream = cv2.VideoCapture(args.face) fps = video_stream.get(cv2.CAP_PROP_FPS) print('Reading video frames...') full_frames = [] while 1: still_reading, frame = video_stream.read() if not still_reading: video_stream.release() break if args.resize_factor > 1: frame = cv2.resize(frame, (frame.shape[1] // args.resize_factor, frame.shape[0] // args.resize_factor)) if args.rotate: frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE) y1, y2, x1, x2 = args.crop if x2 == -1: x2 = frame.shape[1] if y2 == -1: y2 = frame.shape[0] frame = frame[y1:y2, x1:x2] full_frames.append(frame) print("Number of frames available for inference: " + str(len(full_frames))) if not args.audio.endswith('.wav'): print('Extracting raw audio...') command = 'ffmpeg -y -i {} -strict -2 {}'.format(args.audio, f'{folder_path}/temp.wav') subprocess.call(command, shell=True) args.audio = f'{folder_path}/temp.wav' wav = audio.load_wav(args.audio, 16000) mel = audio.melspectrogram(wav) print(mel.shape) if np.isnan(mel.reshape(-1)).sum() > 0: raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again') mel_chunks = [] mel_idx_multiplier = 80. / fps i = 0 while 1: start_idx = int(i * mel_idx_multiplier) if start_idx + mel_step_size > len(mel[0]): mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:]) break mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size]) i += 1 print("Length of mel chunks: {}".format(len(mel_chunks))) full_frames = full_frames[:len(mel_chunks)] batch_size = args.wav2lip_batch_size gen = datagen(full_frames.copy(), mel_chunks) for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, total=int( np.ceil(float(len(mel_chunks)) / batch_size)))): if i == 0: model = load_model(args.checkpoint_path) print("Model loaded") frame_h, frame_w = full_frames[0].shape[:-1] out = cv2.VideoWriter(f'{folder_path}/result.avi', cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h)) img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) with torch.no_grad(): pred = model(mel_batch, img_batch) pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255. for p, f, c in zip(pred, frames, coords): y1, y2, x1, x2 = c p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) f[y1:y2, x1:x2] = p out.write(f) out.release() command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(args.audio, f'{folder_path}/result.avi', args.outfile) subprocess.call(command, shell=platform.system() != 'Windows') if __name__ == '__main__': main()