Spaces:
Sleeping
Sleeping
File size: 25,240 Bytes
e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 099ac14 e6d4b46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
import random
from collections import defaultdict, deque
from typing import Any
import math
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torchaudio
import torchvision.transforms as T
from PIL import Image
from torch.utils.data import Dataset
from torchaudio.functional import resample
class UnNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image):
image2 = torch.clone(image)
for t, m, s in zip(image2, self.mean, self.std):
t.mul_(s).add_(m)
return image2
class SliceDataset(Dataset):
def __init__(self, ds, start, end):
self.ds = ds
self.start = start
self.end = end
def __len__(self):
return self.end - self.start
def __getitem__(self, item):
return self.ds[item + self.start]
class SubsetDataset(Dataset):
def __init__(self, ds, subset):
self.ds = ds
self.subset = subset
def __len__(self):
return len(self.subset)
def __getitem__(self, item):
return self.ds[self.subset[item]]
norm = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
unnorm = UnNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
def crop_to_divisor(x, patch_size):
if len(x.shape) == 3:
C, H, W = x.shape
return x[:, :(patch_size * (H // patch_size)), :(patch_size * (W // patch_size))]
elif len(x.shape) == 4:
B, C, H, W = x.shape
return x[:, :, :(patch_size * (H // patch_size)), :(patch_size * (W // patch_size))]
else:
raise ValueError("x should have 3 or 4 dimensions")
def _remove_axes(ax):
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.yaxis.set_major_formatter(plt.NullFormatter())
ax.set_xticks([])
ax.set_yticks([])
def remove_axes(axes):
if len(axes.shape) == 2:
for ax1 in axes:
for ax in ax1:
_remove_axes(ax)
else:
for ax in axes:
_remove_axes(ax)
def get_image_featurizer(name, token_type="key", **kwargs):
name = name.lower()
if name == "vit":
from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
patch_size = 16
model = DINOFeaturizer("vit_small_patch16_224", patch_size, token_type)
dim = 384
elif name == "dino16":
from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
patch_size = 16
model = DINOFeaturizer("dino_vits16", patch_size, token_type)
dim = 384
elif name == "dino8":
from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
patch_size = 8
model = DINOFeaturizer("dino_vits8", patch_size, token_type)
dim = 384
elif name == "clip":
from DenseAV.denseav.featurizers.CLIP import CLIPFeaturizer
patch_size = 16
model = CLIPFeaturizer()
dim = 512
elif name == "cavmae":
from DenseAV.denseav.featurizers.CAVMAE import CAVMAEImageFeaturizer
model = CAVMAEImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
dim = 768
patch_size = 16
elif name == "fnac":
from DenseAV.denseav.featurizers.FNACAVL import FNACImageFeaturizer
model = FNACImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
dim = 512
patch_size = 16
elif name == "imagebind":
from DenseAV.denseav.featurizers.ImageBind import ImageBindImageFeaturizer
model = ImageBindImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
dim = 1024
patch_size = 16
elif name == "resnet50":
from torchvision import models
model = models.resnet50(pretrained=True)
model = torch.nn.Sequential(*list(model.children())[:-2])
patch_size = 1
dim = 2048
elif name == "davenet":
from fDenseAV.denseav.eaturizers.DAVENet import DavenetImageFeaturizer
model = DavenetImageFeaturizer()
patch_size = 1
dim = 1024
elif name == "dinov2":
from DenseAV.denseav.featurizers.DINOv2 import DINOv2Featurizer
model = DINOv2Featurizer()
patch_size = 14
dim = 768
else:
raise ValueError("unknown model: {}".format(name))
return model, patch_size, dim
def get_audio_featurizer(name, **kwargs):
if name == "davenet":
from DenseAV.denseav.featurizers.DAVENet import DavenetAudioFeaturizer
model = DavenetAudioFeaturizer()
dim = 1024
elif name == "dino8":
model, _, dim = get_image_featurizer("dino8")
elif name == "hubert":
from DenseAV.denseav.featurizers.Hubert import Hubert
model = Hubert()
dim = 1024
elif name == "cavmae":
from DenseAV.denseav.featurizers.CAVMAE import CAVMAEAudioFeaturizer
model = CAVMAEAudioFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
dim = 768
elif name == "imagebind":
from DenseAV.denseav.featurizers.ImageBind import ImageBindAudioFeaturizer
model = ImageBindAudioFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
dim = 1024
elif name == "audiomae":
from DenseAV.denseav.featurizers.AudioMAE import AudioMAE
model = AudioMAE(kwargs["output_root"], False)
dim = 768
elif name == "audiomae-finetuned":
from DenseAV.denseav.featurizers.AudioMAE import AudioMAE
model = AudioMAE(kwargs["output_root"], True)
dim = 768
else:
raise ValueError("Unknown audio model type")
return model, dim
def load_img(image_path, transform):
return transform(Image.open(image_path)).unsqueeze(0)
def pytorch_to_pil(tensor):
return Image.fromarray((unnorm(tensor).permute(0, 2, 3, 1).cpu() * 255)
.clamp(0, 255).to(torch.uint8).detach().numpy()[0])
def _get_random_window(waveform, mask, min_size, max_size):
effective_size = mask.sum().to(torch.int64)
if effective_size <= min_size:
return waveform, mask
else:
window_size = min(torch.randint(low=min_size, high=min(effective_size, max_size), size=()), waveform.shape[0])
if window_size == waveform.shape[0]:
window_start = 0
else:
window_start = torch.randint(low=0, high=effective_size - window_size, size=())
new_waveform = torch.zeros_like(waveform)
new_mask = torch.zeros_like(mask)
new_waveform[window_start:window_start + window_size] = waveform[window_start:window_start + window_size]
new_mask[window_start:window_start + window_size] = mask[window_start:window_start + window_size]
return new_waveform, new_mask
def _splice_clips(clip1, clip2, loc, easing_size):
assert loc >= 0 and loc < len(clip1), "Invalid location"
assert easing_size > 0 and easing_size <= len(clip2), "Invalid easing size"
try:
assert loc + clip2.shape[0] < clip1.shape[0]
except Exception as e:
print(loc, clip2.shape[0], clip1.shape[0])
raise e
# Split clip1 into three parts: before splice, easing region, after splice
before_splice = clip1[:loc]
after_splice = clip1[loc + clip2.shape[0]:]
# Compute the fading weights for the easing region
# fade_in_weights = torch.cos(torch.linspace(1, 0, easing_size, device=clip1.device))
fade_in_weights = 0.5 * (1 + torch.cos(math.pi * torch.linspace(0, 1, easing_size)))
fade_out_weights = 1 - fade_in_weights
clip1_ease = torch.cat([
fade_in_weights,
torch.zeros(clip2.shape[0] - easing_size * 2),
fade_out_weights,
])
mask = torch.cat([torch.ones(loc), clip1_ease, torch.ones(clip1.shape[0] - (loc + clip2.shape[0]))])
# Apply fading weights to clip1 and clip2 within the easing region
splice = clip1_ease * clip1[loc:loc + clip2.shape[0]] + (1 - clip1_ease) * clip2
# Concatenate all parts back together
spliced_clip = torch.cat((before_splice, splice, after_splice))
return spliced_clip, mask
def _generate_random_subset(waveform, low, high):
length = len(waveform)
# If waveform is smaller than low or has zero length, return unmodified
if length < low or length == 0:
return waveform
# Generate random start index within valid range
start = random.randint(0, length - low)
# Generate random subset size within valid range
subset_size = random.randint(low, min(high, length - start))
# Extract the random subset from the waveform
subset = waveform[start: start + subset_size]
return subset
def level_audio(waveform):
waveform -= waveform.mean()
waveform /= waveform.abs.max().valus.clamp_min(.0001)
return waveform
def prep_waveform(waveform,
obs_sr,
target_length,
spec_mel_bins,
spec_mean,
spec_std,
sample_rate,
return_spec,
random_clip,
extra_audio_masking,
neg_waveform,
neg_obs_sr,
audio_level,
audio_aug,
):
if obs_sr != sample_rate:
waveform = resample(waveform, obs_sr, sample_rate)
if audio_level:
waveform = level_audio(waveform)
if neg_obs_sr is not None and neg_obs_sr != sample_rate:
neg_waveform = resample(neg_waveform, neg_obs_sr, sample_rate)
if audio_level:
neg_waveform = level_audio(neg_waveform)
if neg_obs_sr is not None: # and random.random() > .5:
neg_waveform_clip = _generate_random_subset(neg_waveform, sample_rate, sample_rate * 4)
if waveform.shape[0] - neg_waveform_clip.shape[0] > 0:
start = random.randint(0, waveform.shape[0] - neg_waveform_clip.shape[0] - 1)
easing = max(int(neg_waveform_clip.shape[0] * 1 / 4), sample_rate // 2)
easing = min(int(neg_waveform_clip.shape[0] * 1 / 2), easing)
waveform, pos_mask = _splice_clips(waveform, neg_waveform_clip, start, easing_size=easing)
else:
waveform, pos_mask = waveform, torch.ones_like(waveform)
else:
waveform, pos_mask = waveform, torch.ones_like(waveform)
mask = torch.ones_like(waveform)
original_length = waveform.shape[0]
if target_length == 10:
target_samples = 164200 # Result is 1024 after spec
else:
target_samples = int(target_length * sample_rate)
padding = target_samples - original_length
if padding > 0:
p = torch.nn.ZeroPad2d((0, padding))
waveform = p(waveform)
mask = p(mask)
pos_mask = p(pos_mask)
else:
if random_clip:
start = torch.randint(0, waveform.shape[0] - target_samples, size=())
else:
start = 0
end = start + target_samples
waveform = waveform[start:end]
mask = mask[start:end]
pos_mask = pos_mask[start:end]
audio_length = min(original_length, target_samples)
total_length = target_samples
if extra_audio_masking:
min_size = sample_rate // 2
max_size = total_length
if original_length > min_size and random.random() > .5:
waveform, mask = _get_random_window(waveform, mask, min_size, max_size)
if audio_aug:
import torchaudio_augmentations as AA
from torchvision.transforms import RandomApply, Compose
transform = Compose([
RandomApply([AA.PolarityInversion()], p=0.5),
RandomApply([AA.Noise(min_snr=0.001, max_snr=0.005)], p=0.2),
RandomApply([AA.Gain()], p=0.2),
RandomApply([AA.HighLowPass(sample_rate=sample_rate)], p=0.2),
RandomApply([AA.PitchShift(n_samples=waveform.shape[-1], sample_rate=sample_rate)], p=0.2),
RandomApply([AA.Reverb(sample_rate=sample_rate)], p=0.2)
])
waveform = transform(waveform.unsqueeze(0)).squeeze(0)
if return_spec:
spectrogram = torchaudio.compliance.kaldi.fbank(
waveform.unsqueeze(0) - waveform.mean(),
htk_compat=True,
sample_frequency=sample_rate,
use_energy=False,
window_type='hanning',
num_mel_bins=spec_mel_bins,
dither=0.0,
frame_shift=10)
spectrogram = ((spectrogram - spec_mean) / spec_std).unsqueeze(0)
else:
spectrogram = None
if mask.mean() < .04:
print(f"Bad entry: {mask.mean()}")
return waveform, spectrogram, audio_length, total_length, original_length, mask, pos_mask
class ToTargetTensor(object):
def __call__(self, target):
return torch.as_tensor(np.array(target), dtype=torch.int64).unsqueeze(0)
def show_heatmap(ax,
image,
heatmap,
cmap="bwr",
color=False,
center=False,
show_negative=False,
cax=None,
vmax=None,
vmin=None):
frame = []
if color:
frame.append(ax.imshow(image))
else:
bw = np.dot(np.array(image)[..., :3] / 255, [0.2989, 0.5870, 0.1140])
bw = np.ones_like(image) * np.expand_dims(bw, -1)
frame.append(ax.imshow(bw))
if center:
heatmap -= heatmap.mean()
if not show_negative:
heatmap = heatmap.clamp_min(0)
heatmap = F.interpolate(heatmap.unsqueeze(0).unsqueeze(0), (image.shape[0], image.shape[1])) \
.squeeze(0).squeeze(0)
if vmax is None:
vmax = np.abs(heatmap).max()
if vmin is None:
vmin = -vmax
hm = ax.imshow(heatmap, alpha=.5, cmap=cmap, vmax=vmax, vmin=vmin)
if cax is not None:
plt.colorbar(hm, cax=cax, orientation='vertical')
frame.extend([hm])
return frame
class TorchPCA(object):
def __init__(self, n_components):
self.n_components = n_components
def fit(self, X):
self.mean_ = X.mean(dim=0)
unbiased = X - self.mean_.unsqueeze(0)
U, S, V = torch.pca_lowrank(unbiased, q=self.n_components, center=False, niter=4)
self.components_ = V.T
self.singular_values_ = S
return self
def transform(self, X):
t0 = X - self.mean_.unsqueeze(0)
projected = t0 @ self.components_.T
return projected
def pca(image_feats_list, dim=3, fit_pca=None):
device = image_feats_list[0].device
def flatten(tensor, target_size=None):
if target_size is not None and fit_pca is None:
F.interpolate(tensor, (target_size, target_size), mode="bilinear")
B, C, H, W = tensor.shape
return feats.permute(1, 0, 2, 3).reshape(C, B * H * W).permute(1, 0).detach().cpu()
if len(image_feats_list) > 1 and fit_pca is None:
target_size = image_feats_list[0].shape[2]
else:
target_size = None
flattened_feats = []
for feats in image_feats_list:
flattened_feats.append(flatten(feats, target_size))
x = torch.cat(flattened_feats, dim=0)
if fit_pca is None:
# fit_pca = PCA(n_components=dim, svd_solver='arpack').fit(np.nan_to_num(x.detach().numpy()))
fit_pca = TorchPCA(n_components=dim).fit(x)
reduced_feats = []
for feats in image_feats_list:
# x_red = torch.from_numpy(fit_pca.transform(flatten(feats)))
x_red = fit_pca.transform(flatten(feats))
x_red -= x_red.min(dim=0, keepdim=True).values
x_red /= x_red.max(dim=0, keepdim=True).values
B, C, H, W = feats.shape
reduced_feats.append(x_red.reshape(B, H, W, dim).permute(0, 3, 1, 2).to(device))
return reduced_feats, fit_pca
def merge_col(fig, axes, col):
gs = axes[0, col].get_gridspec()
for ax in axes[:, col]:
ax.remove()
return fig.add_subplot(gs[:, col])
def visualize_av_features(
audio,
video,
feat_a,
feat_v,
att_a,
n_frames,
norm_before_pca=True,
axes=None,
fig=None,
modify_fig=True,
video_time=0,
fit_pca=None
):
assert (len(audio.shape) == 3) # C, F, T
assert (len(video.shape) == 4) # T, C, H, W
assert (len(feat_a.shape) == 2) # C, T
assert (len(feat_v.shape) == 4) # T, C, H, W
assert (len(att_a.shape) == 2) # F, T
ac, af, at = audio.shape
fac, fat = feat_a.shape
if modify_fig:
if axes is None:
fig, axes = plt.subplots(3, 3, figsize=(5 * 3, 5))
fig.tight_layout()
bigax1 = merge_col(fig, axes, 0)
bigax2 = merge_col(fig, axes, 1)
_remove_axes(bigax1)
_remove_axes(bigax2)
remove_axes(axes[:, 2])
else:
bigax1 = fig.axes[-2]
bigax2 = fig.axes[-1]
frame_v = unnorm(video).permute(0, 2, 3, 1).detach().cpu()
frame_v -= frame_v.min()
frame_v /= frame_v.max()
frame_a = audio.detach().cpu()
frame_a -= frame_a.min()
frame_a /= frame_a.max()
if norm_before_pca:
[red_feat_v], fit_pca = pca([F.normalize(feat_v, dim=1)], fit_pca=fit_pca)
[red_feat_a], _ = pca([F.normalize(feat_a.unsqueeze(0).unsqueeze(-1), dim=1)], fit_pca=fit_pca)
else:
[red_feat_v], fit_pca = pca([feat_v], fit_pca=fit_pca)
[red_feat_a], _ = pca([feat_a.unsqueeze(0).unsqueeze(-1)], fit_pca=fit_pca)
red_feat_v = red_feat_v.permute(0, 2, 3, 1).detach().cpu()
red_feat_a = red_feat_a.permute(0, 2, 3, 1)[0].detach().cpu()
if red_feat_a.shape[0] == 1:
new_height = int((frame_a.shape[0] / frame_a.shape[1]) * red_feat_a.shape[1])
red_feat_a = torch.broadcast_to(
red_feat_a, (new_height, red_feat_a.shape[1], red_feat_a.shape[2]))
plt_att_a = torch.broadcast_to(att_a, (new_height, att_a.shape[1]))
else:
plt_att_a = att_a
frac_signal = n_frames / fat
n_at = int(at * frac_signal)
return [bigax1.imshow(frame_v[video_time]),
bigax2.imshow(red_feat_v[video_time]),
axes[0, 2].imshow(frame_a[:, :n_at]),
axes[0, 2].set_title("Spectrogram"),
axes[1, 2].imshow(red_feat_a[:, :n_frames]),
axes[1, 2].set_title("Audio Features"),
axes[2, 2].imshow(plt_att_a[:, :n_frames], vmin=0),
axes[2, 2].set_title("Audio Attention")], fig, fit_pca
def create_label_tensor(labels, starts, ends, max_time, n_steps):
assert isinstance(starts, torch.Tensor)
assert isinstance(ends, torch.Tensor)
ends[ends < 0] = max_time
fps = n_steps / max_time
times = (torch.arange(0, n_steps, device=labels.device, dtype=torch.float32) + .5) / fps
after_start = starts.unsqueeze(1) <= times.unsqueeze(0)
before_end = ends.unsqueeze(1) >= times.unsqueeze(0)
# Find when you are inside of a word
in_word = (after_start * before_end)
# Find which word you are inside of
word_to_use = in_word.to(torch.float32).argmax(0)
# Get the label for that word, or mask out the label if in no word
final_labels = labels[word_to_use] * in_word.any(0).reshape(-1, 1, 1)
return final_labels
def generate_subset(n, batch, seed=0):
np.random.seed(seed)
return np.random.permutation(n)[:batch]
def channel_blur(t, window=5, std_dev=1):
tb, tc, th, tw = t.shape
x = torch.linspace(-2, 2, window, device=t.device, dtype=torch.float32)
k = torch.exp((-x ** 2 / (2 * std_dev ** 2)))
k = k / k.sum()
pad = window // 2
t_pad = F.pad(t, [0, 0, 0, 0, pad, pad], mode="replicate")
tpb, tpc, tph, tpw = t_pad.shape
flattened_t = t_pad.permute(0, 2, 3, 1).reshape(tpb * tph * tpw, 1, -1)
return F.conv1d(flattened_t, k.reshape(1, 1, window)).reshape(tpb, tph, tpw, tc).permute(0, 3, 1, 2)
def time_blur(t, window=5, std_dev=1):
tb, tc, tt = t.shape
with torch.no_grad():
x = torch.linspace(-2, 2, window, device=t.device, dtype=torch.float32)
k = torch.exp((-x ** 2 / (2 * std_dev ** 2)))
k = k / k.sum()
k = k.reshape(1, 1, window).detach()
pad = window // 2
t_pad = F.pad(t, [pad, pad], mode="replicate")
return F.conv1d(t_pad.reshape(tb * tc, 1, -1), k).reshape(tb, tc, tt)
def create_model_from_cfg(clazz, cfg, extra_args):
import inspect
expected_args = inspect.getfullargspec(clazz.__init__).args[1:]
new_args = {k: v for k, v in {**cfg, **extra_args}.items() if k in expected_args}
return clazz(**new_args)
def load_trained_model(chkpt_dir, extra_args, strict=True):
from train_av_alignment import LitAVAligner
model = LitAVAligner.load_from_checkpoint(chkpt_dir, **extra_args, strict=strict).cuda()
return model
def flatten(l):
return [item for sublist in l for item in sublist]
def flatten_preds(preds):
results = {}
for k in preds[0].keys():
if k == "caption_labels":
continue
if isinstance(preds[0][k], torch.Tensor):
results[k] = torch.cat([p[k] for p in preds], dim=0)
if "caption" in preds[0]:
results["caption"] = flatten([p["caption"] for p in preds])
if "metadata" in preds[0]:
results["frame_files"] = flatten([list(p["metadata"]["frame_files"][0]) for p in preds])
results["audio_file"] = flatten([list(p["metadata"]["audio_file"]) for p in preds])
results["id"] = flatten([list(p["metadata"]["id"]) for p in preds])
results["index"] = torch.tensor(flatten([list(p["metadata"]["index"]) for p in preds]))
return results
def batch(iterable, n=1):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx:min(ndx + n, l)]
class GatherLayer(torch.autograd.Function):
"""Gather tensors from all process, supporting backward propagation."""
@staticmethod
def jvp(ctx: Any, *grad_inputs: Any) -> Any:
pass
@staticmethod
def forward(ctx, inputs):
ctx.save_for_backward(inputs)
output = [torch.zeros_like(inputs) for _ in range(dist.get_world_size())]
dist.all_gather(output, inputs)
return tuple(output)
@staticmethod
def backward(ctx, *grads):
(inputs,) = ctx.saved_tensors
grad_out = torch.zeros_like(inputs)
grad_out[:] = grads[dist.get_rank()]
return grad_out
class RollingAvg:
def __init__(self, length, nonzero=False):
self.length = length
self.nonzero = nonzero
self.metrics = defaultdict(lambda: deque(maxlen=self.length))
def add(self, name, metric):
if self.nonzero and metric == 0:
return
if isinstance(metric, torch.Tensor):
metric = metric.detach()
self.metrics[name].append(metric)
def get(self, name):
with torch.no_grad():
return torch.tensor(list(self.metrics[name])).mean()
def get_all(self):
return {k: self.get(k) for k in self.metrics.keys()}
def add_all(self, values):
for k, v in values.items():
self.add(k, v)
def logall(self, log_func):
for k in self.metrics.keys():
log_func(k, self.get(k))
def gaussian_kernel(k, sigma):
kernel = torch.tensor([math.exp(-0.5 * (x - (k // 2)) ** 2 / sigma ** 2) for x in range(k)], dtype=torch.float32)
kernel /= kernel.sum() # Normalize the kernel
return kernel
def blur_dim(t, window=5, std_dev=1, dim=-1):
shape = t.shape
n_dims = len(shape)
# Create the Gaussian kernel
with torch.no_grad():
x = torch.linspace(-2, 2, window, device=t.device, dtype=torch.float32)
k = torch.exp(-x ** 2 / (2 * std_dev ** 2))
k = k / k.sum()
k = k.view(1, 1, window).detach()
# Calculate padding
pad = window // 2
# Move the target dimension to the end
permute_order = list(range(n_dims))
permute_order.append(permute_order.pop(dim))
t_permuted = t.permute(permute_order)
# Flatten all dimensions except the last one
new_shape = (-1, t_permuted.size(-1))
t_flattened = t_permuted.reshape(new_shape)
# Pad the tensor
t_padded = F.pad(t_flattened.unsqueeze(1), (pad, pad), mode="replicate")
# Apply convolution
blurred = F.conv1d(t_padded, k)
# Reshape back to original
blurred = blurred.squeeze(1).reshape(*t_permuted.shape)
blurred = blurred.permute([permute_order.index(i) for i in range(n_dims)])
return blurred
|