File size: 25,240 Bytes
e6d4b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099ac14
e6d4b46
 
 
 
099ac14
e6d4b46
 
 
 
099ac14
e6d4b46
 
 
 
099ac14
e6d4b46
 
 
 
099ac14
e6d4b46
 
 
 
099ac14
e6d4b46
 
 
 
099ac14
e6d4b46
 
 
 
 
 
 
 
 
 
099ac14
e6d4b46
 
 
 
099ac14
e6d4b46
 
 
 
 
 
 
 
 
 
099ac14
e6d4b46
 
 
 
 
099ac14
e6d4b46
 
 
099ac14
e6d4b46
 
 
099ac14
e6d4b46
 
 
099ac14
e6d4b46
 
 
099ac14
e6d4b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
import random
from collections import defaultdict, deque
from typing import Any

import math
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torchaudio
import torchvision.transforms as T
from PIL import Image
from torch.utils.data import Dataset
from torchaudio.functional import resample


class UnNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        image2 = torch.clone(image)
        for t, m, s in zip(image2, self.mean, self.std):
            t.mul_(s).add_(m)
        return image2


class SliceDataset(Dataset):

    def __init__(self, ds, start, end):
        self.ds = ds
        self.start = start
        self.end = end

    def __len__(self):
        return self.end - self.start

    def __getitem__(self, item):
        return self.ds[item + self.start]


class SubsetDataset(Dataset):

    def __init__(self, ds, subset):
        self.ds = ds
        self.subset = subset

    def __len__(self):
        return len(self.subset)

    def __getitem__(self, item):
        return self.ds[self.subset[item]]


norm = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
unnorm = UnNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])


def crop_to_divisor(x, patch_size):
    if len(x.shape) == 3:
        C, H, W = x.shape
        return x[:, :(patch_size * (H // patch_size)), :(patch_size * (W // patch_size))]
    elif len(x.shape) == 4:
        B, C, H, W = x.shape
        return x[:, :, :(patch_size * (H // patch_size)), :(patch_size * (W // patch_size))]
    else:
        raise ValueError("x should have 3 or 4 dimensions")


def _remove_axes(ax):
    ax.xaxis.set_major_formatter(plt.NullFormatter())
    ax.yaxis.set_major_formatter(plt.NullFormatter())
    ax.set_xticks([])
    ax.set_yticks([])


def remove_axes(axes):
    if len(axes.shape) == 2:
        for ax1 in axes:
            for ax in ax1:
                _remove_axes(ax)
    else:
        for ax in axes:
            _remove_axes(ax)


def get_image_featurizer(name, token_type="key", **kwargs):
    name = name.lower()

    if name == "vit":
        from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
        patch_size = 16
        model = DINOFeaturizer("vit_small_patch16_224", patch_size, token_type)
        dim = 384
    elif name == "dino16":
        from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
        patch_size = 16
        model = DINOFeaturizer("dino_vits16", patch_size, token_type)
        dim = 384
    elif name == "dino8":
        from DenseAV.denseav.featurizers.DINO import DINOFeaturizer
        patch_size = 8
        model = DINOFeaturizer("dino_vits8", patch_size, token_type)
        dim = 384
    elif name == "clip":
        from DenseAV.denseav.featurizers.CLIP import CLIPFeaturizer
        patch_size = 16
        model = CLIPFeaturizer()
        dim = 512
    elif name == "cavmae":
        from DenseAV.denseav.featurizers.CAVMAE import CAVMAEImageFeaturizer
        model = CAVMAEImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
        dim = 768
        patch_size = 16
    elif name == "fnac":
        from DenseAV.denseav.featurizers.FNACAVL import FNACImageFeaturizer
        model = FNACImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
        dim = 512
        patch_size = 16
    elif name == "imagebind":
        from DenseAV.denseav.featurizers.ImageBind import ImageBindImageFeaturizer
        model = ImageBindImageFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
        dim = 1024
        patch_size = 16
    elif name == "resnet50":
        from torchvision import models
        model = models.resnet50(pretrained=True)
        model = torch.nn.Sequential(*list(model.children())[:-2])
        patch_size = 1
        dim = 2048
    elif name == "davenet":
        from fDenseAV.denseav.eaturizers.DAVENet import DavenetImageFeaturizer
        model = DavenetImageFeaturizer()
        patch_size = 1
        dim = 1024
    elif name == "dinov2":
        from DenseAV.denseav.featurizers.DINOv2 import DINOv2Featurizer
        model = DINOv2Featurizer()
        patch_size = 14
        dim = 768
    else:
        raise ValueError("unknown model: {}".format(name))
    return model, patch_size, dim


def get_audio_featurizer(name, **kwargs):
    if name == "davenet":
        from DenseAV.denseav.featurizers.DAVENet import DavenetAudioFeaturizer
        model = DavenetAudioFeaturizer()
        dim = 1024
    elif name == "dino8":
        model, _, dim = get_image_featurizer("dino8")
    elif name == "hubert":
        from DenseAV.denseav.featurizers.Hubert import Hubert
        model = Hubert()
        dim = 1024
    elif name == "cavmae":
        from DenseAV.denseav.featurizers.CAVMAE import CAVMAEAudioFeaturizer
        model = CAVMAEAudioFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
        dim = 768
    elif name == "imagebind":
        from DenseAV.denseav.featurizers.ImageBind import ImageBindAudioFeaturizer
        model = ImageBindAudioFeaturizer(kwargs["output_root"], model=kwargs.get("model"))
        dim = 1024
    elif name == "audiomae":
        from DenseAV.denseav.featurizers.AudioMAE import AudioMAE
        model = AudioMAE(kwargs["output_root"], False)
        dim = 768
    elif name == "audiomae-finetuned":
        from DenseAV.denseav.featurizers.AudioMAE import AudioMAE
        model = AudioMAE(kwargs["output_root"], True)
        dim = 768
    else:
        raise ValueError("Unknown audio model type")

    return model, dim


def load_img(image_path, transform):
    return transform(Image.open(image_path)).unsqueeze(0)


def pytorch_to_pil(tensor):
    return Image.fromarray((unnorm(tensor).permute(0, 2, 3, 1).cpu() * 255)
                           .clamp(0, 255).to(torch.uint8).detach().numpy()[0])


def _get_random_window(waveform, mask, min_size, max_size):
    effective_size = mask.sum().to(torch.int64)
    if effective_size <= min_size:
        return waveform, mask
    else:
        window_size = min(torch.randint(low=min_size, high=min(effective_size, max_size), size=()), waveform.shape[0])
        if window_size == waveform.shape[0]:
            window_start = 0
        else:
            window_start = torch.randint(low=0, high=effective_size - window_size, size=())

        new_waveform = torch.zeros_like(waveform)
        new_mask = torch.zeros_like(mask)
        new_waveform[window_start:window_start + window_size] = waveform[window_start:window_start + window_size]
        new_mask[window_start:window_start + window_size] = mask[window_start:window_start + window_size]
        return new_waveform, new_mask


def _splice_clips(clip1, clip2, loc, easing_size):
    assert loc >= 0 and loc < len(clip1), "Invalid location"
    assert easing_size > 0 and easing_size <= len(clip2), "Invalid easing size"

    try:
        assert loc + clip2.shape[0] < clip1.shape[0]
    except Exception as e:
        print(loc, clip2.shape[0], clip1.shape[0])
        raise e

    # Split clip1 into three parts: before splice, easing region, after splice
    before_splice = clip1[:loc]
    after_splice = clip1[loc + clip2.shape[0]:]

    # Compute the fading weights for the easing region
    # fade_in_weights = torch.cos(torch.linspace(1, 0, easing_size, device=clip1.device))
    fade_in_weights = 0.5 * (1 + torch.cos(math.pi * torch.linspace(0, 1, easing_size)))
    fade_out_weights = 1 - fade_in_weights

    clip1_ease = torch.cat([
        fade_in_weights,
        torch.zeros(clip2.shape[0] - easing_size * 2),
        fade_out_weights,
    ])

    mask = torch.cat([torch.ones(loc), clip1_ease, torch.ones(clip1.shape[0] - (loc + clip2.shape[0]))])

    # Apply fading weights to clip1 and clip2 within the easing region
    splice = clip1_ease * clip1[loc:loc + clip2.shape[0]] + (1 - clip1_ease) * clip2

    # Concatenate all parts back together
    spliced_clip = torch.cat((before_splice, splice, after_splice))

    return spliced_clip, mask


def _generate_random_subset(waveform, low, high):
    length = len(waveform)

    # If waveform is smaller than low or has zero length, return unmodified
    if length < low or length == 0:
        return waveform

    # Generate random start index within valid range
    start = random.randint(0, length - low)

    # Generate random subset size within valid range
    subset_size = random.randint(low, min(high, length - start))

    # Extract the random subset from the waveform
    subset = waveform[start: start + subset_size]

    return subset


def level_audio(waveform):
    waveform -= waveform.mean()
    waveform /= waveform.abs.max().valus.clamp_min(.0001)
    return waveform


def prep_waveform(waveform,

                  obs_sr,

                  target_length,

                  spec_mel_bins,

                  spec_mean,

                  spec_std,

                  sample_rate,

                  return_spec,

                  random_clip,

                  extra_audio_masking,

                  neg_waveform,

                  neg_obs_sr,

                  audio_level,

                  audio_aug,

                  ):
    if obs_sr != sample_rate:
        waveform = resample(waveform, obs_sr, sample_rate)
        if audio_level:
            waveform = level_audio(waveform)

    if neg_obs_sr is not None and neg_obs_sr != sample_rate:
        neg_waveform = resample(neg_waveform, neg_obs_sr, sample_rate)
        if audio_level:
            neg_waveform = level_audio(neg_waveform)

    if neg_obs_sr is not None:  # and random.random() > .5:
        neg_waveform_clip = _generate_random_subset(neg_waveform, sample_rate, sample_rate * 4)
        if waveform.shape[0] - neg_waveform_clip.shape[0] > 0:
            start = random.randint(0, waveform.shape[0] - neg_waveform_clip.shape[0] - 1)
            easing = max(int(neg_waveform_clip.shape[0] * 1 / 4), sample_rate // 2)
            easing = min(int(neg_waveform_clip.shape[0] * 1 / 2), easing)
            waveform, pos_mask = _splice_clips(waveform, neg_waveform_clip, start, easing_size=easing)
        else:
            waveform, pos_mask = waveform, torch.ones_like(waveform)
    else:
        waveform, pos_mask = waveform, torch.ones_like(waveform)

    mask = torch.ones_like(waveform)
    original_length = waveform.shape[0]

    if target_length == 10:
        target_samples = 164200  # Result is 1024 after spec
    else:
        target_samples = int(target_length * sample_rate)

    padding = target_samples - original_length

    if padding > 0:
        p = torch.nn.ZeroPad2d((0, padding))
        waveform = p(waveform)
        mask = p(mask)
        pos_mask = p(pos_mask)
    else:
        if random_clip:
            start = torch.randint(0, waveform.shape[0] - target_samples, size=())
        else:
            start = 0
        end = start + target_samples
        waveform = waveform[start:end]
        mask = mask[start:end]
        pos_mask = pos_mask[start:end]

    audio_length = min(original_length, target_samples)
    total_length = target_samples

    if extra_audio_masking:
        min_size = sample_rate // 2
        max_size = total_length
        if original_length > min_size and random.random() > .5:
            waveform, mask = _get_random_window(waveform, mask, min_size, max_size)

    if audio_aug:
        import torchaudio_augmentations as AA
        from torchvision.transforms import RandomApply, Compose

        transform = Compose([
            RandomApply([AA.PolarityInversion()], p=0.5),
            RandomApply([AA.Noise(min_snr=0.001, max_snr=0.005)], p=0.2),
            RandomApply([AA.Gain()], p=0.2),
            RandomApply([AA.HighLowPass(sample_rate=sample_rate)], p=0.2),
            RandomApply([AA.PitchShift(n_samples=waveform.shape[-1], sample_rate=sample_rate)], p=0.2),
            RandomApply([AA.Reverb(sample_rate=sample_rate)], p=0.2)
        ])
        waveform = transform(waveform.unsqueeze(0)).squeeze(0)

    if return_spec:
        spectrogram = torchaudio.compliance.kaldi.fbank(
            waveform.unsqueeze(0) - waveform.mean(),
            htk_compat=True,
            sample_frequency=sample_rate,
            use_energy=False,
            window_type='hanning',
            num_mel_bins=spec_mel_bins,
            dither=0.0,
            frame_shift=10)

        spectrogram = ((spectrogram - spec_mean) / spec_std).unsqueeze(0)
    else:
        spectrogram = None

    if mask.mean() < .04:
        print(f"Bad entry: {mask.mean()}")

    return waveform, spectrogram, audio_length, total_length, original_length, mask, pos_mask


class ToTargetTensor(object):
    def __call__(self, target):
        return torch.as_tensor(np.array(target), dtype=torch.int64).unsqueeze(0)


def show_heatmap(ax,

                 image,

                 heatmap,

                 cmap="bwr",

                 color=False,

                 center=False,

                 show_negative=False,

                 cax=None,

                 vmax=None,

                 vmin=None):
    frame = []

    if color:
        frame.append(ax.imshow(image))
    else:
        bw = np.dot(np.array(image)[..., :3] / 255, [0.2989, 0.5870, 0.1140])
        bw = np.ones_like(image) * np.expand_dims(bw, -1)
        frame.append(ax.imshow(bw))

    if center:
        heatmap -= heatmap.mean()

    if not show_negative:
        heatmap = heatmap.clamp_min(0)

    heatmap = F.interpolate(heatmap.unsqueeze(0).unsqueeze(0), (image.shape[0], image.shape[1])) \
        .squeeze(0).squeeze(0)

    if vmax is None:
        vmax = np.abs(heatmap).max()
    if vmin is None:
        vmin = -vmax

    hm = ax.imshow(heatmap, alpha=.5, cmap=cmap, vmax=vmax, vmin=vmin)
    if cax is not None:
        plt.colorbar(hm, cax=cax, orientation='vertical')

    frame.extend([hm])
    return frame


class TorchPCA(object):

    def __init__(self, n_components):
        self.n_components = n_components

    def fit(self, X):
        self.mean_ = X.mean(dim=0)
        unbiased = X - self.mean_.unsqueeze(0)
        U, S, V = torch.pca_lowrank(unbiased, q=self.n_components, center=False, niter=4)
        self.components_ = V.T
        self.singular_values_ = S
        return self

    def transform(self, X):
        t0 = X - self.mean_.unsqueeze(0)
        projected = t0 @ self.components_.T
        return projected


def pca(image_feats_list, dim=3, fit_pca=None):
    device = image_feats_list[0].device

    def flatten(tensor, target_size=None):
        if target_size is not None and fit_pca is None:
            F.interpolate(tensor, (target_size, target_size), mode="bilinear")
        B, C, H, W = tensor.shape
        return feats.permute(1, 0, 2, 3).reshape(C, B * H * W).permute(1, 0).detach().cpu()

    if len(image_feats_list) > 1 and fit_pca is None:
        target_size = image_feats_list[0].shape[2]
    else:
        target_size = None

    flattened_feats = []
    for feats in image_feats_list:
        flattened_feats.append(flatten(feats, target_size))
    x = torch.cat(flattened_feats, dim=0)

    if fit_pca is None:
        # fit_pca = PCA(n_components=dim, svd_solver='arpack').fit(np.nan_to_num(x.detach().numpy()))
        fit_pca = TorchPCA(n_components=dim).fit(x)

    reduced_feats = []
    for feats in image_feats_list:
        # x_red = torch.from_numpy(fit_pca.transform(flatten(feats)))
        x_red = fit_pca.transform(flatten(feats))
        x_red -= x_red.min(dim=0, keepdim=True).values
        x_red /= x_red.max(dim=0, keepdim=True).values
        B, C, H, W = feats.shape
        reduced_feats.append(x_red.reshape(B, H, W, dim).permute(0, 3, 1, 2).to(device))

    return reduced_feats, fit_pca


def merge_col(fig, axes, col):
    gs = axes[0, col].get_gridspec()
    for ax in axes[:, col]:
        ax.remove()
    return fig.add_subplot(gs[:, col])


def visualize_av_features(

        audio,

        video,

        feat_a,

        feat_v,

        att_a,

        n_frames,

        norm_before_pca=True,

        axes=None,

        fig=None,

        modify_fig=True,

        video_time=0,

        fit_pca=None

):
    assert (len(audio.shape) == 3)  # C, F, T
    assert (len(video.shape) == 4)  # T, C, H, W
    assert (len(feat_a.shape) == 2)  # C, T
    assert (len(feat_v.shape) == 4)  # T, C, H, W
    assert (len(att_a.shape) == 2)  # F, T

    ac, af, at = audio.shape
    fac, fat = feat_a.shape

    if modify_fig:
        if axes is None:
            fig, axes = plt.subplots(3, 3, figsize=(5 * 3, 5))
            fig.tight_layout()

        bigax1 = merge_col(fig, axes, 0)
        bigax2 = merge_col(fig, axes, 1)
        _remove_axes(bigax1)
        _remove_axes(bigax2)
        remove_axes(axes[:, 2])
    else:
        bigax1 = fig.axes[-2]
        bigax2 = fig.axes[-1]

    frame_v = unnorm(video).permute(0, 2, 3, 1).detach().cpu()
    frame_v -= frame_v.min()
    frame_v /= frame_v.max()

    frame_a = audio.detach().cpu()
    frame_a -= frame_a.min()
    frame_a /= frame_a.max()

    if norm_before_pca:
        [red_feat_v], fit_pca = pca([F.normalize(feat_v, dim=1)], fit_pca=fit_pca)
        [red_feat_a], _ = pca([F.normalize(feat_a.unsqueeze(0).unsqueeze(-1), dim=1)], fit_pca=fit_pca)
    else:
        [red_feat_v], fit_pca = pca([feat_v], fit_pca=fit_pca)
        [red_feat_a], _ = pca([feat_a.unsqueeze(0).unsqueeze(-1)], fit_pca=fit_pca)

    red_feat_v = red_feat_v.permute(0, 2, 3, 1).detach().cpu()
    red_feat_a = red_feat_a.permute(0, 2, 3, 1)[0].detach().cpu()

    if red_feat_a.shape[0] == 1:
        new_height = int((frame_a.shape[0] / frame_a.shape[1]) * red_feat_a.shape[1])
        red_feat_a = torch.broadcast_to(
            red_feat_a, (new_height, red_feat_a.shape[1], red_feat_a.shape[2]))
        plt_att_a = torch.broadcast_to(att_a, (new_height, att_a.shape[1]))
    else:
        plt_att_a = att_a

    frac_signal = n_frames / fat
    n_at = int(at * frac_signal)

    return [bigax1.imshow(frame_v[video_time]),
            bigax2.imshow(red_feat_v[video_time]),
            axes[0, 2].imshow(frame_a[:, :n_at]),
            axes[0, 2].set_title("Spectrogram"),
            axes[1, 2].imshow(red_feat_a[:, :n_frames]),
            axes[1, 2].set_title("Audio Features"),
            axes[2, 2].imshow(plt_att_a[:, :n_frames], vmin=0),
            axes[2, 2].set_title("Audio Attention")], fig, fit_pca


def create_label_tensor(labels, starts, ends, max_time, n_steps):
    assert isinstance(starts, torch.Tensor)
    assert isinstance(ends, torch.Tensor)

    ends[ends < 0] = max_time
    fps = n_steps / max_time
    times = (torch.arange(0, n_steps, device=labels.device, dtype=torch.float32) + .5) / fps
    after_start = starts.unsqueeze(1) <= times.unsqueeze(0)
    before_end = ends.unsqueeze(1) >= times.unsqueeze(0)
    # Find when you are inside of a word
    in_word = (after_start * before_end)
    # Find which word you are inside of
    word_to_use = in_word.to(torch.float32).argmax(0)
    # Get the label for that word, or mask out the label if in no word
    final_labels = labels[word_to_use] * in_word.any(0).reshape(-1, 1, 1)
    return final_labels


def generate_subset(n, batch, seed=0):
    np.random.seed(seed)
    return np.random.permutation(n)[:batch]


def channel_blur(t, window=5, std_dev=1):
    tb, tc, th, tw = t.shape
    x = torch.linspace(-2, 2, window, device=t.device, dtype=torch.float32)
    k = torch.exp((-x ** 2 / (2 * std_dev ** 2)))
    k = k / k.sum()
    pad = window // 2
    t_pad = F.pad(t, [0, 0, 0, 0, pad, pad], mode="replicate")
    tpb, tpc, tph, tpw = t_pad.shape
    flattened_t = t_pad.permute(0, 2, 3, 1).reshape(tpb * tph * tpw, 1, -1)
    return F.conv1d(flattened_t, k.reshape(1, 1, window)).reshape(tpb, tph, tpw, tc).permute(0, 3, 1, 2)


def time_blur(t, window=5, std_dev=1):
    tb, tc, tt = t.shape
    with torch.no_grad():
        x = torch.linspace(-2, 2, window, device=t.device, dtype=torch.float32)
        k = torch.exp((-x ** 2 / (2 * std_dev ** 2)))
        k = k / k.sum()
        k = k.reshape(1, 1, window).detach()
    pad = window // 2
    t_pad = F.pad(t, [pad, pad], mode="replicate")
    return F.conv1d(t_pad.reshape(tb * tc, 1, -1), k).reshape(tb, tc, tt)


def create_model_from_cfg(clazz, cfg, extra_args):
    import inspect
    expected_args = inspect.getfullargspec(clazz.__init__).args[1:]
    new_args = {k: v for k, v in {**cfg, **extra_args}.items() if k in expected_args}
    return clazz(**new_args)


def load_trained_model(chkpt_dir, extra_args, strict=True):
    from train_av_alignment import LitAVAligner
    model = LitAVAligner.load_from_checkpoint(chkpt_dir, **extra_args, strict=strict).cuda()
    return model


def flatten(l):
    return [item for sublist in l for item in sublist]


def flatten_preds(preds):
    results = {}
    for k in preds[0].keys():
        if k == "caption_labels":
            continue
        if isinstance(preds[0][k], torch.Tensor):
            results[k] = torch.cat([p[k] for p in preds], dim=0)
    if "caption" in preds[0]:
        results["caption"] = flatten([p["caption"] for p in preds])

    if "metadata" in preds[0]:
        results["frame_files"] = flatten([list(p["metadata"]["frame_files"][0]) for p in preds])
        results["audio_file"] = flatten([list(p["metadata"]["audio_file"]) for p in preds])
        results["id"] = flatten([list(p["metadata"]["id"]) for p in preds])
        results["index"] = torch.tensor(flatten([list(p["metadata"]["index"]) for p in preds]))

    return results


def batch(iterable, n=1):
    l = len(iterable)
    for ndx in range(0, l, n):
        yield iterable[ndx:min(ndx + n, l)]


class GatherLayer(torch.autograd.Function):
    """Gather tensors from all process, supporting backward propagation."""

    @staticmethod
    def jvp(ctx: Any, *grad_inputs: Any) -> Any:
        pass

    @staticmethod
    def forward(ctx, inputs):
        ctx.save_for_backward(inputs)
        output = [torch.zeros_like(inputs) for _ in range(dist.get_world_size())]
        dist.all_gather(output, inputs)
        return tuple(output)

    @staticmethod
    def backward(ctx, *grads):
        (inputs,) = ctx.saved_tensors
        grad_out = torch.zeros_like(inputs)
        grad_out[:] = grads[dist.get_rank()]
        return grad_out


class RollingAvg:

    def __init__(self, length, nonzero=False):
        self.length = length
        self.nonzero = nonzero
        self.metrics = defaultdict(lambda: deque(maxlen=self.length))

    def add(self, name, metric):
        if self.nonzero and metric == 0:
            return
        if isinstance(metric, torch.Tensor):
            metric = metric.detach()

        self.metrics[name].append(metric)

    def get(self, name):
        with torch.no_grad():
            return torch.tensor(list(self.metrics[name])).mean()

    def get_all(self):
        return {k: self.get(k) for k in self.metrics.keys()}

    def add_all(self, values):
        for k, v in values.items():
            self.add(k, v)

    def logall(self, log_func):
        for k in self.metrics.keys():
            log_func(k, self.get(k))


def gaussian_kernel(k, sigma):
    kernel = torch.tensor([math.exp(-0.5 * (x - (k // 2)) ** 2 / sigma ** 2) for x in range(k)], dtype=torch.float32)
    kernel /= kernel.sum()  # Normalize the kernel
    return kernel


def blur_dim(t, window=5, std_dev=1, dim=-1):
    shape = t.shape
    n_dims = len(shape)

    # Create the Gaussian kernel
    with torch.no_grad():
        x = torch.linspace(-2, 2, window, device=t.device, dtype=torch.float32)
        k = torch.exp(-x ** 2 / (2 * std_dev ** 2))
        k = k / k.sum()
        k = k.view(1, 1, window).detach()

    # Calculate padding
    pad = window // 2

    # Move the target dimension to the end
    permute_order = list(range(n_dims))
    permute_order.append(permute_order.pop(dim))
    t_permuted = t.permute(permute_order)

    # Flatten all dimensions except the last one
    new_shape = (-1, t_permuted.size(-1))
    t_flattened = t_permuted.reshape(new_shape)

    # Pad the tensor
    t_padded = F.pad(t_flattened.unsqueeze(1), (pad, pad), mode="replicate")

    # Apply convolution
    blurred = F.conv1d(t_padded, k)

    # Reshape back to original
    blurred = blurred.squeeze(1).reshape(*t_permuted.shape)
    blurred = blurred.permute([permute_order.index(i) for i in range(n_dims)])

    return blurred