Spaces:
Running
Running
File size: 7,001 Bytes
e18e4b9 0ce559f a491062 0ce559f a491062 0ce559f 31f68c5 0ce559f a491062 ecbe2cb c939ae3 a491062 0ce559f a491062 0ce559f a491062 0ce559f a491062 0ce559f db52c57 0ce559f a3e1fdc 0ce559f ecbe2cb 0ce559f b17997f 0ce559f a491062 0ce559f a491062 0ce559f a491062 0ce559f a491062 0ce559f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Video_fps to Fractional, cause it goes to method that needs numerator and denomerator
import csv
import os
import tempfile
import gradio as gr
import requests
import torch
import torchvision
import torchvision.transforms as T
from PIL import Image
# from featup.util import norm
from torchaudio.functional import resample
from os.path import join
from fractions import Fraction
from DenseAV.denseav.train import LitAVAligner
from DenseAV.denseav.plotting import plot_attention_video, plot_2head_attention_video, plot_feature_video
from DenseAV.denseav.shared import norm, crop_to_divisor, blur_dim
mode = "hf"
if mode == "local":
sample_videos_dir = "samples"
else:
os.environ['TORCH_HOME'] = '/tmp/.cache'
os.environ['HF_HOME'] = '/tmp/.cache'
os.environ['HF_DATASETS_CACHE'] = '/tmp/.cache'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/.cache'
os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'
sample_videos_dir = "/tmp/samples"
def download_video(url, save_path):
response = requests.get(url)
with open(save_path, 'wb') as file:
file.write(response.content)
base_url = "https://marhamilresearch4.blob.core.windows.net/denseav-public/samples/"
sample_videos_urls = {
"puppies.mp4": base_url + "puppies.mp4",
"peppers.mp4": base_url + "peppers.mp4",
"boat.mp4": base_url + "boat.mp4",
"elephant2.mp4": base_url + "elephant2.mp4",
}
# Ensure the directory for sample videos exists
os.makedirs(sample_videos_dir, exist_ok=True)
# Download each sample video
for filename, url in sample_videos_urls.items():
save_path = os.path.join(sample_videos_dir, filename)
# Download the video if it doesn't already exist
if not os.path.exists(save_path):
print(f"Downloading {filename}...")
download_video(url, save_path)
else:
print(f"{filename} already exists. Skipping download.")
csv.field_size_limit(100000000)
options = ['language', "sound_and_language", "sound"] # Changed second to initial
load_size = 224
plot_size = 224
video_input = gr.Video(label="Choose a video to featurize", height=480)
model_option = gr.Radio(options, value="language", label='Choose a model')
video_output1 = gr.Video(label="Audio Video Attention", height=480)
video_output2 = gr.Video(label="Multi-Head Audio Video Attention (Only Availible for sound_and_language)",
height=480)
video_output3 = gr.Video(label="Visual Features", height=480)
models = {
'language': LitAVAligner.from_pretrained(f"mhamilton723/DenseAV-language"),
'sound_and_language': LitAVAligner.from_pretrained(f"mhamilton723/DenseAV-sound-language"),
'sound': LitAVAligner.from_pretrained(f"mhamilton723/DenseAV-sound")
}
def process_video(video, model_option):
# model = models[model_option].cuda()
model = models[model_option]
original_frames, audio, info = torchvision.io.read_video(video, end_pts=10, pts_unit='sec')
sample_rate = 16000
if info["audio_fps"] != sample_rate:
audio = resample(audio, info["audio_fps"], sample_rate)
audio = audio[0].unsqueeze(0)
info["video_fps"] = Fraction(info["video_fps"]).limit_denominator(1000)
img_transform = T.Compose([
T.Resize(load_size, Image.BILINEAR),
lambda x: crop_to_divisor(x, 8),
lambda x: x.to(torch.float32) / 255,
norm])
frames = torch.cat([img_transform(f.permute(2, 0, 1)).unsqueeze(0) for f in original_frames], axis=0)
plotting_img_transform = T.Compose([
T.Resize(plot_size, Image.BILINEAR),
lambda x: crop_to_divisor(x, 8),
lambda x: x.to(torch.float32) / 255])
frames_to_plot = plotting_img_transform(original_frames.permute(0, 3, 1, 2))
with torch.no_grad():
# audio_feats = model.forward_audio({"audio": audio.cuda()})
audio_feats = model.forward_audio({"audio": audio})
audio_feats = {k: v.cpu() for k, v in audio_feats.items()}
# image_feats = model.forward_image({"frames": frames.unsqueeze(0).cuda()}, max_batch_size=2)
image_feats = model.forward_image({"frames": frames.unsqueeze(0)}, max_batch_size=2)
image_feats = {k: v.cpu() for k, v in image_feats.items()}
sim_by_head = model.sim_agg.get_pairwise_sims(
{**image_feats, **audio_feats},
raw=False,
agg_sim=False,
agg_heads=False
).mean(dim=-2).cpu()
sim_by_head = blur_dim(sim_by_head, window=3, dim=-1)
temp_video_path_1 = tempfile.mktemp(suffix='.mp4')
plot_attention_video(
sim_by_head,
frames_to_plot,
audio,
info["video_fps"],
sample_rate,
temp_video_path_1)
if model_option == "sound_and_language": # change to _ _
temp_video_path_2 = tempfile.mktemp(suffix='.mp4')
plot_2head_attention_video(
sim_by_head,
frames_to_plot,
audio,
info["video_fps"],
sample_rate,
temp_video_path_2)
else:
temp_video_path_2 = None
temp_video_path_3 = tempfile.mktemp(suffix='.mp4')
temp_video_path_4 = tempfile.mktemp(suffix='.mp4')
plot_feature_video(
image_feats["image_feats"].cpu(),
audio_feats['audio_feats'].cpu(),
frames_to_plot,
audio,
info["video_fps"],
sample_rate,
temp_video_path_3,
temp_video_path_4,
)
# return temp_video_path_1, temp_video_path_2, temp_video_path_3, temp_video_path_4
return temp_video_path_1, temp_video_path_2, temp_video_path_3
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("## Visualizing Sound and Language with DenseAV")
gr.Markdown(
"This demo allows you to explore the inner attention maps of DenseAV's dense multi-head contrastive operator.")
with gr.Row():
with gr.Column(scale=1):
model_option.render()
with gr.Column(scale=3):
video_input.render()
with gr.Row():
submit_button = gr.Button("Submit")
with gr.Row():
gr.Examples(
examples=[
[join(sample_videos_dir, "puppies.mp4"), "sound_and_language"],
[join(sample_videos_dir, "peppers.mp4"), "language"],
[join(sample_videos_dir, "elephant2.mp4"), "language"],
[join(sample_videos_dir, "boat.mp4"), "language"]
],
inputs=[video_input, model_option]
)
with gr.Row():
video_output1.render()
video_output2.render()
video_output3.render()
submit_button.click(fn=process_video, inputs=[video_input, model_option],
outputs=[video_output1, video_output2, video_output3])
if mode == "local":
demo.launch(server_name="0.0.0.0", server_port=6006, debug=True)
else:
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True) |