lorocksUMD's picture
Update DenseAV/denseav/plotting.py
05f784a verified
import os
from collections import defaultdict
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import numpy as np
import scipy.io.wavfile as wavfile
import torch
import torch.nn.functional as F
import torchvision
from moviepy import *
# from moviepy.editor import VideoFileClip, AudioFileClip
from base64 import b64encode
from DenseAV.denseav.shared import pca
def write_video_with_audio(video_frames, audio_array, video_fps, audio_fps, output_path):
"""
Writes video frames and audio to a specified path.
Parameters:
- video_frames: torch.Tensor of shape (num_frames, height, width, channels)
- audio_array: torch.Tensor of shape (num_samples, num_channels)
- video_fps: int, frames per second of the video
- audio_fps: int, sample rate of the audio
- output_path: str, path to save the final video with audio
"""
os.makedirs(os.path.dirname(output_path), exist_ok=True)
temp_video_path = output_path.replace('.mp4', '_temp.mp4')
temp_audio_path = output_path.replace('.mp4', '_temp_audio.wav')
video_options = {
'crf': '23',
'preset': 'slow',
'bit_rate': '1000k'}
if audio_array is not None:
torchvision.io.write_video(
filename=temp_video_path,
video_array=video_frames,
fps=video_fps,
options=video_options
)
wavfile.write(temp_audio_path, audio_fps, audio_array.cpu().to(torch.float64).permute(1, 0).numpy())
video_clip = VideoFileClip(temp_video_path)
audio_clip = AudioFileClip(temp_audio_path)
final_clip = video_clip.with_audio(audio_clip)
final_clip.write_videofile(output_path, codec='libx264')
os.remove(temp_video_path)
os.remove(temp_audio_path)
else:
torchvision.io.write_video(
filename=output_path,
video_array=video_frames,
fps=video_fps,
options=video_options
)
def alpha_blend_layers(layers):
blended_image = layers[0]
for layer in layers[1:]:
rgb1, alpha1 = blended_image[:, :3, :, :], blended_image[:, 3:4, :, :]
rgb2, alpha2 = layer[:, :3, :, :], layer[:, 3:4, :, :]
alpha_out = alpha2 + alpha1 * (1 - alpha2)
rgb_out = (rgb2 * alpha2 + rgb1 * alpha1 * (1 - alpha2)) / alpha_out.clamp(min=1e-7)
blended_image = torch.cat([rgb_out, alpha_out], dim=1)
return (blended_image[:, :3] * 255).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1)
def _prep_sims_for_plotting(sim_by_head, frames):
with torch.no_grad():
results = defaultdict(list)
n_frames, _, vh, vw = frames.shape
sims = sim_by_head.max(dim=1).values
n_audio_feats = sims.shape[-1]
for frame_num in range(n_frames):
selected_audio_feat = int((frame_num / n_frames) * n_audio_feats)
selected_sim = F.interpolate(
sims[frame_num, :, :, selected_audio_feat].unsqueeze(0).unsqueeze(0),
size=(vh, vw),
mode="bicubic")
results["sims_all"].append(selected_sim)
for head in range(sim_by_head.shape[1]):
selected_sim = F.interpolate(
sim_by_head[frame_num, head, :, :, selected_audio_feat].unsqueeze(0).unsqueeze(0),
size=(vh, vw),
mode="bicubic")
results[f"sims_{head + 1}"].append(selected_sim)
results = {k: torch.cat(v, dim=0) for k, v in results.items()}
return results
def get_plasma_with_alpha():
plasma = plt.cm.plasma(np.linspace(0, 1, 256))
alphas = np.linspace(0, 1, 256)
plasma_with_alpha = np.zeros((256, 4))
plasma_with_alpha[:, 0:3] = plasma[:, 0:3]
plasma_with_alpha[:, 3] = alphas
return mcolors.ListedColormap(plasma_with_alpha)
def get_inferno_with_alpha_2(alpha=0.5, k=30):
k_fraction = k / 100.0
custom_cmap = np.zeros((256, 4))
threshold_index = int(k_fraction * 256)
custom_cmap[:threshold_index, :3] = 0 # RGB values for black
custom_cmap[:threshold_index, 3] = alpha # Alpha value
remaining_inferno = plt.cm.inferno(np.linspace(0, 1, 256 - threshold_index))
custom_cmap[threshold_index:, :3] = remaining_inferno[:, :3]
custom_cmap[threshold_index:, 3] = alpha # Alpha value
return mcolors.ListedColormap(custom_cmap)
def get_inferno_with_alpha():
plasma = plt.cm.inferno(np.linspace(0, 1, 256))
alphas = np.linspace(0, 1, 256)
plasma_with_alpha = np.zeros((256, 4))
plasma_with_alpha[:, 0:3] = plasma[:, 0:3]
plasma_with_alpha[:, 3] = alphas
return mcolors.ListedColormap(plasma_with_alpha)
red_cmap = mcolors.LinearSegmentedColormap('RedMap', segmentdata={
'red': [(0.0, 1.0, 1.0), (1.0, 1.0, 1.0)],
'green': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'blue': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'alpha': [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0)]
})
blue_cmap = mcolors.LinearSegmentedColormap('BlueMap', segmentdata={
'red': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'green': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'blue': [(0.0, 1.0, 1.0), (1.0, 1.0, 1.0)],
'alpha': [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0)]
})
def plot_attention_video(sims_by_head, frames, audio, video_fps, audio_fps, output_filename):
prepped_sims = _prep_sims_for_plotting(sims_by_head, frames)
n_frames, _, vh, vw = frames.shape
sims_all = prepped_sims["sims_all"].clamp_min(0)
sims_all -= sims_all.min()
sims_all = sims_all / sims_all.max()
cmap = get_inferno_with_alpha()
layer1 = torch.cat([frames, torch.ones(n_frames, 1, vh, vw)], axis=1)
layer2 = torch.tensor(cmap(sims_all.squeeze().detach().cpu())).permute(0, 3, 1, 2)
write_video_with_audio(
alpha_blend_layers([layer1, layer2]),
audio,
video_fps,
audio_fps,
output_filename)
def plot_2head_attention_video(sims_by_head, frames, audio, video_fps, audio_fps, output_filename):
prepped_sims = _prep_sims_for_plotting(sims_by_head, frames)
sims_1 = prepped_sims["sims_1"]
sims_2 = prepped_sims["sims_2"]
n_frames, _, vh, vw = frames.shape
mask = sims_1 > sims_2
sims_1 *= mask
sims_2 *= (~mask)
sims_1 = sims_1.clamp_min(0)
sims_1 -= sims_1.min()
sims_1 = sims_1 / sims_1.max()
sims_2 = sims_2.clamp_min(0)
sims_2 -= sims_2.min()
sims_2 = sims_2 / sims_2.max()
layer1 = torch.cat([frames, torch.ones(n_frames, 1, vh, vw)], axis=1)
layer2_head1 = torch.tensor(red_cmap(sims_1.squeeze().detach().cpu())).permute(0, 3, 1, 2)
layer2_head2 = torch.tensor(blue_cmap(sims_2.squeeze().detach().cpu())).permute(0, 3, 1, 2)
write_video_with_audio(
alpha_blend_layers([layer1, layer2_head1, layer2_head2]),
audio,
video_fps,
audio_fps,
output_filename)
def plot_feature_video(image_feats,
audio_feats,
frames,
audio,
video_fps,
audio_fps,
video_filename,
audio_filename):
with torch.no_grad():
image_feats_ = image_feats.cpu()
audio_feats_ = audio_feats.cpu()
[red_img_feats, red_audio_feats], _ = pca([
image_feats_,
audio_feats_, # .tile(image_feats_.shape[0], 1, 1, 1)
])
_, _, vh, vw = frames.shape
red_img_feats = F.interpolate(red_img_feats, size=(vh, vw), mode="bicubic")
red_audio_feats = red_audio_feats[0].unsqueeze(0)
red_audio_feats = F.interpolate(red_audio_feats, size=(50, red_img_feats.shape[0]), mode="bicubic")
write_video_with_audio(
(red_img_feats.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8),
audio,
video_fps,
audio_fps,
video_filename)
red_audio_feats_expanded = red_audio_feats.tile(red_img_feats.shape[0], 1, 1, 1)
red_audio_feats_expanded = F.interpolate(red_audio_feats_expanded, scale_factor=6, mode="bicubic")
for i in range(red_img_feats.shape[0]):
center_index = i * 6
min_index = max(center_index - 2, 0)
max_index = min(center_index + 2, red_audio_feats_expanded.shape[-1])
red_audio_feats_expanded[i, :, :, min_index:max_index] = 1
write_video_with_audio(
(red_audio_feats_expanded.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8),
audio,
video_fps,
audio_fps,
audio_filename)
def display_video_in_notebook(path):
from IPython.display import HTML, display
mp4 = open(path, 'rb').read()
data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
display(HTML("""
<video width=400 controls>
<source src="%s" type="video/mp4">
</video>
""" % data_url))