lorocksUMD's picture
Upload 32 files
099ac14 verified
import os
from collections import deque
from itertools import combinations
from os.path import join
import hydra
import numpy as np
import pytorch_lightning as pl
import torch
import torch.distributed as dist
import torch.nn.functional as F
from omegaconf import DictConfig, OmegaConf
from peft import get_peft_model, LoraConfig
from pytorch_lightning import Trainer
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.utilities import grad_norm
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, SequentialLR, LambdaLR
from torchmetrics.functional.classification import binary_average_precision
from huggingface_hub import PyTorchModelHubMixin
from DenseAV.denseav.aggregators import get_aggregator
from DenseAV.denseav.aligners import get_aligner, ProgressiveGrowing
from DenseAV.denseav.constants import *
from DenseAV.denseav.data.AVDatasets import AVDataModule
from DenseAV.denseav.shared import flatten_preds, GatherLayer, \
get_image_featurizer, get_audio_featurizer, RollingAvg, create_model_from_cfg
torch.multiprocessing.set_sharing_strategy('file_system')
def _imposter_indices_helper(true_indices: torch.Tensor, samples: torch.Tensor):
mask = (true_indices == samples).to(torch.int64)
n = mask.shape[0]
if not mask.any():
return samples
else:
new_samples = torch.randint(0, n, size=(n,), device=true_indices.device)
comb_samples = mask * new_samples + (1 - mask) * samples
return _imposter_indices_helper(true_indices, comb_samples)
def imposter_indices(n, device):
return _imposter_indices_helper(
torch.arange(0, n, device=device),
torch.randint(0, n, size=(n,), device=device))
def get_sim_per_row(image_outputs, audio_outputs, n_frames, sim_type):
max_t = audio_outputs.shape[-1]
oh = F.one_hot(n_frames - 1, num_classes=max_t)
audio_mask = 1 - torch.cumsum(oh, dim=1)
audio_mask = F.pad(audio_mask, [1, 0], value=1)[:, :max_t].to(audio_outputs.dtype)
full_sim = torch.einsum("bct,bchw->bthw", audio_outputs, image_outputs)
expanded_am = audio_mask.unsqueeze(-1).unsqueeze(-1)
if sim_type.endswith("mi"):
offset = 10 * (full_sim.max() - full_sim.min())
full_sim = (full_sim - ((1 - expanded_am) * offset)).max(1, keepdim=True).values
if sim_type.startswith("mi"):
full_sim = full_sim.max(-1, keepdim=True).values.max(-2, keepdim=True).values
if sim_type.endswith("sa"):
full_sim = (full_sim * (expanded_am / expanded_am.sum(1, keepdim=True).clamp_min(1))).sum(1, keepdim=True)
return full_sim.mean(dim=[1, 2, 3])
def sampled_margin_rank_loss(image_outputs, audio_outputs, n_frames, sim_type, margin=1.):
"""
Computes the triplet margin ranking loss for each anchor image/caption pair
The impostor image/caption is randomly sampled from the minibatch
"""
assert (image_outputs.dim() == 4)
assert (audio_outputs.dim() == 3)
n = image_outputs.size(0)
imp_ind_i = imposter_indices(n, image_outputs.device)
imp_ind_a = imposter_indices(n, image_outputs.device)
true_sim = get_sim_per_row(image_outputs, audio_outputs, n_frames, sim_type)
imp_sim_i = get_sim_per_row(image_outputs[imp_ind_i], audio_outputs, n_frames, sim_type)
imp_sim_a = get_sim_per_row(image_outputs, audio_outputs[imp_ind_a], n_frames[imp_ind_a], sim_type)
a2i_loss = (margin + imp_sim_i - true_sim).clamp_min(0)
i2a_loss = (margin + imp_sim_a - true_sim).clamp_min(0)
return (a2i_loss + i2a_loss).mean() / 2
class SimilarityCalibrator(torch.nn.Module):
def __init__(self, cal_init, max_w=100, min_w=.01, subtract_mean=True, use_bias=False):
super().__init__()
self.max_w = max_w
self.min_w = min_w
self.w = torch.nn.Parameter(torch.tensor([cal_init]).log())
self.use_bias = use_bias
if self.use_bias:
self.b = torch.nn.Parameter(torch.tensor([0.0]))
self.subtract_mean = subtract_mean
def get_w(self):
return torch.exp(self.w).clamp_max(self.max_w).clamp_min(self.min_w)
def forward(self, x):
sims = self.get_w() * x
if self.use_bias:
sims = sims + self.b
if self.subtract_mean:
return sims - sims.mean()
else:
return sims
class SpatialDropout(torch.nn.Module):
def __init__(self, p, *args, **kwargs):
super().__init__(*args, **kwargs)
self.p = p
def forward(self, x):
b, c, h, w = x.shape
dropout = torch.rand((b, 1, h, w), dtype=x.dtype, device=x.device) > self.p
if self.training:
return x * dropout
else:
return x
class LitAVAligner(pl.LightningModule, PyTorchModelHubMixin, repo_url="https://github.com/mhamilton723/DenseAV", license="mit", tags=["denseav"]):
def __init__(self,
code_dim,
image_model_type,
image_model_token_type,
image_aligner_type,
image_pool_width,
audio_model_type,
audio_aligner_type,
audio_pool_width,
audio_lora,
audio_lora_rank,
image_lora,
image_lora_rank,
gradient_clipping,
learn_audio_cls,
silence_l1,
silence_l2,
tv_weight,
nonneg_sim,
nonneg_pressure,
pretrain_lr,
lr,
lr_warmup,
lr_schedule,
lr_cycle_length,
optimizer,
gather_tensors,
sim_agg_type,
sim_agg_heads,
sim_use_cls,
disentangle_weight,
norm_vectors,
cal_init,
cal_balance_weight,
loss_type,
loss_margin,
mask_silence,
finetune_image_model,
finetune_audio_model,
use_cached_embs,
output_root,
neg_audio,
neg_audio_weight,
head_agg,
adaptive_clipping,
specialization_weight,
spatial_dropout,
channel_dropout,
mixup_weight,
memory_buffer_size,
loss_leak,
):
super().__init__()
self.code_dim = code_dim
self.image_model_type = image_model_type
self.image_model_token_type = image_model_token_type
self.image_aligner_type = image_aligner_type
self.image_pool_width = image_pool_width
self.audio_model_type = audio_model_type
self.audio_aligner_type = audio_aligner_type
self.audio_pool_width = audio_pool_width
self.gradient_clipping = gradient_clipping
self.learn_audio_cls = learn_audio_cls
self.silence_l1 = silence_l1
self.silence_l2 = silence_l2
self.tv_weight = tv_weight
self.nonneg_sim = nonneg_sim
self.nonneg_pressure = nonneg_pressure
self.pretrain_lr = pretrain_lr
self.lr = lr
self.lr_warmup = lr_warmup
self.lr_schedule = lr_schedule
self.lr_cycle_length = lr_cycle_length
self.optimizer = optimizer
self.gather_tensors = gather_tensors
self.sim_agg_type = sim_agg_type
self.sim_agg_heads = sim_agg_heads
self.sim_use_cls = sim_use_cls
self.disentangle_weight = disentangle_weight
self.norm_vectors = norm_vectors
self.cal_init = cal_init
self.cal_balance_weight = cal_balance_weight
self.loss_type = loss_type
self.loss_margin = loss_margin
self.mask_silence = mask_silence
self.finetune_image_model = finetune_image_model
self.finetune_audio_model = finetune_audio_model
self.use_cached_embs = use_cached_embs
self.output_root = output_root
self.audio_lora = audio_lora
self.audio_lora_rank = audio_lora_rank
self.image_lora = image_lora
self.image_lora_rank = image_lora_rank
self.neg_audio = neg_audio
self.neg_audio_weight = neg_audio_weight
self.head_agg = head_agg
self.adaptive_clipping = adaptive_clipping
self.specialization_weight = specialization_weight
self.spatial_dropout = spatial_dropout
self.channel_dropout = channel_dropout
self.mixup_weight = mixup_weight
self.memory_buffer_size = memory_buffer_size
self.memory_buffer = deque(maxlen=self.memory_buffer_size)
self.loss_leak = loss_leak
self.full_train = False # Added by me
if self.audio_model_type in {"audiomae", "audiomae-finetuned", "cavmae", "cavmae-mixed", "imagebind"}:
self.audio_input = "spec"
elif self.audio_model_type == "davenet":
self.audio_input = "davenet_spec"
elif self.audio_model_type == "fnac":
self.audio_input = "fnac_spec"
else:
self.audio_input = "audio"
extra_model_args = dict(output_root=output_root)
self.image_model, _, self.image_feat_dim = get_image_featurizer(
image_model_type, token_type=self.image_model_token_type, **extra_model_args)
self.image_model.eval()
if not self.finetune_image_model:
for param in self.image_model.parameters():
param.requires_grad = False
if image_model_type in {"cavmae", "cavmae-mixed", "imagebind", "fnac"}:
extra_model_args["model"] = self.image_model.model
if use_cached_embs:
_, self.audio_feat_dim = get_audio_featurizer(audio_model_type, **extra_model_args)
else:
self.audio_model, self.audio_feat_dim = get_audio_featurizer(audio_model_type, **extra_model_args)
self.audio_model.eval()
if not self.finetune_audio_model:
for param in self.audio_model.parameters():
param.requires_grad = False
if self.image_lora:
if self.image_model_type in {"sam", "dino8", "dinov2", "cavmae", "cavmae-mixed"}:
target_modules = ["qkv"]
elif self.image_model_type == "clip":
target_modules = ["out_proj"]
elif self.image_model_type == "imagebind":
target_modules = ["out_proj", "fc1", "fc2"]
else:
target_modules = ["q", "k", "v"]
peft_config = LoraConfig(
target_modules=target_modules,
inference_mode=False,
r=image_lora_rank,
lora_alpha=32,
lora_dropout=0.1
)
self.image_model = get_peft_model(self.image_model, peft_config)
self.image_model.print_trainable_parameters()
if self.audio_lora:
if self.audio_model_type == "hubert":
target_modules = ["q_proj", "k_proj", "v_proj"]
else:
target_modules = ["q", "k", "v"]
peft_config = LoraConfig(
inference_mode=False,
target_modules=target_modules,
r=audio_lora_rank,
lora_alpha=32,
lora_dropout=0.1
)
self.audio_model = get_peft_model(self.audio_model, peft_config)
self.audio_model.print_trainable_parameters()
shared_aligner_args = dict(out_dim=self.code_dim)
self.audio_aligner = get_aligner(
self.audio_aligner_type, self.audio_feat_dim, **shared_aligner_args)
self.image_aligner = get_aligner(
self.image_aligner_type, self.image_feat_dim, **shared_aligner_args)
if self.loss_type == "nce":
self.sim_cal = SimilarityCalibrator(self.cal_init, subtract_mean=True, use_bias=False)
else:
self.sim_cal = SimilarityCalibrator(self.cal_init, subtract_mean=False, use_bias=True)
if self.learn_audio_cls:
self.audio_cls = torch.nn.Parameter(torch.randn(self.audio_feat_dim))
if self.spatial_dropout > 0.0:
self.spatial_dropout_layer = SpatialDropout(self.spatial_dropout)
if self.channel_dropout > 0.0:
self.channel_dropout_layer = torch.nn.Dropout2d(self.channel_dropout)
self.sim_agg = get_aggregator(
self.sim_agg_type,
self.nonneg_sim,
self.mask_silence,
self.sim_agg_heads,
self.head_agg,
self.sim_use_cls,
dim=self.image_feat_dim
)
self.hparams_logged = False
self.rolling_avg = RollingAvg(50)
self.grad_avg = RollingAvg(50, nonzero=True)
self.save_hyperparameters()
def set_full_train(self, full_train):
self.full_train = full_train
def prep_feats(self, feats, is_audio):
if not is_audio and self.training and self.image_pool_width > 1:
feats = torch.nn.AvgPool2d(self.image_pool_width)(feats)
if is_audio and self.training and self.audio_pool_width > 1:
feats = torch.nn.AvgPool2d((1, self.audio_pool_width))(feats)
if self.norm_vectors:
feats = F.normalize(feats, dim=1)
return feats
def on_before_optimizer_step(self, optimizer, optimizer_idx):
norms = grad_norm(self, norm_type=2)
avg_grads = self.grad_avg.get_all()
params = {
f"grad_2.0_norm/{name}": p
for name, p in self.named_parameters()
if p.grad is not None
}
if self.adaptive_clipping:
for k in norms.keys():
if k in params:
avg_grad = max(avg_grads.get(k, norms[k]), 1e-5)
if self.global_step > 10 and norms[k] > avg_grad * 5:
print(f"Bad grad for {k}: {norms[k]} scaling to {avg_grad * 5}")
torch.nn.utils.clip_grad_norm_(params[k], avg_grad * 5)
norms[k] = avg_grad * 5
if norms[k] > self.gradient_clipping:
# print(f"Bad grad for {k}: {norms[k]} scaling to {self.gradient_clipping}")
torch.nn.utils.clip_grad_norm_(params[k], self.gradient_clipping)
# self.grad_avg.add_all(norms)
# self.log_dict(norms)
def interpolate_mask(self, mask, target_length, discrete):
b, t = mask.shape
mask = F.interpolate(mask.reshape(b, 1, 1, t), (1, target_length), mode="bilinear") \
.reshape(b, target_length)
if discrete:
mask = mask > 0.01
sums = mask.sum(1)
all_zeros = torch.where(sums == 0)[0]
if len(all_zeros) > 0:
print("Fixing a bad mask")
for entry in all_zeros:
mask[entry, torch.randint(0, target_length - 1, size=())] = True
else:
return mask
return mask
def forward_audio(self, batch):
if self.use_cached_embs:
audio_feats = batch["audio_emb"]
if "audio_cls" in batch:
audio_cls = batch["audio_cls"]
else:
audio_cls = None
else:
audio = batch[self.audio_input]
if self.full_train:
audio_feats, audio_cls = self.audio_model(audio, include_cls=True)
else:
with torch.no_grad():
audio_feats, audio_cls = self.audio_model(audio, include_cls=True)
mask = batch[AUDIO_MASK] if AUDIO_MASK in batch else torch.ones_like(audio)
pos_mask = batch[AUDIO_POS_MASK] if AUDIO_POS_MASK in batch else torch.ones_like(audio)
if self.learn_audio_cls:
assert audio_cls is None
audio_cls = torch.broadcast_to(self.audio_cls.unsqueeze(0), (audio_feats.shape[0], audio_feats.shape[1]))
aligned_audio_feats, aligned_audio_cls = self.audio_aligner(audio_feats, audio_cls)
if self.channel_dropout > 0.0:
aligned_audio_feats = self.channel_dropout_layer(aligned_audio_feats)
aligned_audio_feats = self.prep_feats(aligned_audio_feats, is_audio=True)
audio_mask = self.interpolate_mask(mask, aligned_audio_feats.shape[-1], True)
audio_pos_mask = self.interpolate_mask(pos_mask, aligned_audio_feats.shape[-1], False)
ret = {
AUDIO_MASK: audio_mask,
AUDIO_POS_MASK: audio_pos_mask,
AUDIO_FEATS: aligned_audio_feats,
}
if aligned_audio_cls is not None:
ret[AUDIO_CLS] = aligned_audio_cls
return ret
# @autocast(device_type="cuda", enabled=False)
def forward_image(self, batch, max_batch_size=None):
with torch.no_grad():
image = batch[IMAGE_INPUT]
b, nf, c, h, w = image.shape
image = image.reshape(b * nf, c, h, w)
if max_batch_size is None:
max_batch_size = image.shape[0]
chunks = [image[i:i + max_batch_size] for i in range(0, image.shape[0], max_batch_size)]
all_image_feats = []
all_image_cls = []
for chunk in chunks:
if self.full_train:
image_feats, image_cls = self.image_model(chunk, include_cls=True)
else:
with torch.no_grad():
image_feats, image_cls = self.image_model(chunk, include_cls=True)
aligned_image_feats, aligned_image_cls = self.image_aligner(image_feats, image_cls)
all_image_feats.append(aligned_image_feats)
all_image_cls.append(aligned_image_cls)
# Stitch the chunks back together
aligned_image_feats = torch.cat(all_image_feats, dim=0)
aligned_image_cls = torch.cat(all_image_cls, dim=0)
if self.channel_dropout > 0.0:
aligned_image_feats = self.channel_dropout_layer(aligned_image_feats)
if self.spatial_dropout > 0.0:
aligned_image_feats = self.spatial_dropout_layer(aligned_image_feats)
aligned_image_feats = self.prep_feats(aligned_image_feats, is_audio=False)
ret = {IMAGE_FEATS: aligned_image_feats}
if IMAGE_MASK in batch:
with torch.no_grad():
mask = batch[IMAGE_MASK]
mask = mask.reshape(b * nf, 1, h, w)
b, c, h, w = aligned_image_feats.shape
mask = F.adaptive_avg_pool2d(mask.to(aligned_image_feats), output_size=(h, w))
ret[IMAGE_MASK] = mask
if aligned_image_cls is not None:
ret[IMAGE_CLS] = aligned_image_cls
return ret
def forward(self, batch):
audio_feat_dict = self.forward_audio(batch)
image_feat_dict = self.forward_image(batch)
return {**image_feat_dict, **audio_feat_dict}
def contrast_loss(self, sims):
b = sims.shape[0]
sims = sims - torch.eye(b, b, device=sims.device) * self.loss_margin
sims_1 = sims
sims_2 = sims.permute(1, 0)
if self.loss_leak > 0.0:
id = torch.eye(sims_1.shape[0], sims_1.shape[1], device=sims.device, dtype=sims.dtype)
label_mask = id * (1 - self.loss_leak)
label_mask += (1 - id) * self.loss_leak / (sims_1.shape[0] - 1)
label_mask /= label_mask.sum(dim=1, keepdim=True)
else:
label_mask = torch.eye(sims_1.shape[0], sims_1.shape[1], device=sims.device, dtype=sims.dtype)
labels = torch.arange(0, sims.shape[0], device=sims.device)
self.rolling_avg.add(f"acc/1", (sims.argmax(dim=1) == labels).to(sims).mean())
self.rolling_avg.add(f"acc/2", (sims.argmax(dim=0) == labels).to(sims).mean())
if self.loss_type == "margin":
margin_loss_tensor = (sims - torch.diag(sims)).clamp_min(0)
margin_loss = margin_loss_tensor.mean()
self.rolling_avg.add(f"loss/frac_nonzero", (margin_loss_tensor > 0).to(sims).mean())
self.rolling_avg.add(f"loss/margin", margin_loss)
return margin_loss
elif self.loss_type == "ce":
ce_loss = 1 / 2 * F.cross_entropy(sims_1, labels) + \
1 / 2 * F.cross_entropy(sims_2, labels)
self.rolling_avg.add(f"loss/ce", ce_loss)
return ce_loss
elif self.loss_type == "bce":
bce_loss = F.binary_cross_entropy_with_logits(sims_1.flatten(), label_mask.flatten())
self.rolling_avg.add(f"loss/bce", bce_loss)
return bce_loss
elif self.loss_type == "nce":
nce_loss = 1 / 2 * (-F.log_softmax(sims_1, dim=-1) * label_mask).sum(1).mean() + \
1 / 2 * (-F.log_softmax(sims_2, dim=-1) * label_mask).sum(1).mean()
self.rolling_avg.add(f"loss/nce", nce_loss)
return nce_loss
else:
raise ValueError(f"Unknown loss type {self.loss_type}")
def loss(self, preds):
image_feats = preds[IMAGE_FEATS]
audio_feats = preds[AUDIO_FEATS]
audio_mask = preds[AUDIO_MASK]
image_mask = preds[IMAGE_MASK]
audio_pos_mask = preds[AUDIO_POS_MASK]
if DATA_SOURCE in preds:
source = preds[DATA_SOURCE].to(torch.int64)
else:
source = None
uncal_sims = self.sim_agg(preds, agg_heads=True)
sims = self.sim_cal(uncal_sims)
_mask = 1 - torch.eye(sims.shape[0], device=sims.device)
self.log(f"sim/pos", torch.diag(sims).mean())
self.log(f"sim/neg", (sims * _mask).sum() / (_mask.sum()))
self.log(f"sim/uncal_pos", torch.diag(uncal_sims).mean())
self.log(f"sim/uncal_neg", (uncal_sims * _mask).sum() / (_mask.sum()))
b, c, h, w = image_feats.shape
b, c, f, t = audio_feats.shape
n_samples = 250
nh = self.sim_agg_heads
image_feats_by_head = image_feats.reshape(b, self.sim_agg_heads, c // nh, h, w)
audio_feats_by_head = audio_feats.reshape(b, self.sim_agg_heads, c // nh, f, t)
def maybe_clamp(t):
return t.clamp_min(0) if self.nonneg_sim else t
paired_sim_raw = self.sim_agg.get_pairwise_sims(preds, raw=True, agg_sim=False, agg_heads=False)
paired_sim = maybe_clamp(paired_sim_raw)
loss = 0.0
if self.nonneg_pressure:
afb, afk, afc, aff, aft = audio_feats_by_head.shape
ifb, ifk, ifc, ifh, ifw = image_feats_by_head.shape
assert (afb == ifb)
device = audio_feats_by_head.device
random_b = torch.randint(0, afb, size=(n_samples,), device=device)
random_t = torch.randint(0, aft, size=(n_samples,), device=device)
random_f = torch.randint(0, aff, size=(n_samples,), device=device)
random_h = torch.randint(0, ifh, size=(n_samples,), device=device)
random_w = torch.randint(0, ifw, size=(n_samples,), device=device)
random_audio_feats = audio_feats_by_head[random_b, :, :, random_f, random_t]
random_image_feats = image_feats_by_head[random_b, :, :, random_h, random_w]
random_sim_raw = torch.einsum("bkc,dkc->bdk", random_audio_feats, random_image_feats)
nonneg_loss = random_sim_raw.clamp_max(0).square().mean()
self.rolling_avg.add(f"loss/nonneg", nonneg_loss)
loss += nonneg_loss * self.nonneg_pressure
if self.silence_l1 > 0 or self.silence_l2 > 0:
masked_b, masked_t = torch.where(~audio_mask)
if len(masked_b) > n_samples:
subset = torch.randperm(len(masked_b))[:n_samples]
masked_b = masked_b[subset]
masked_t = masked_t[subset]
if len(masked_b) == n_samples:
silent_audio_feats = audio_feats_by_head[masked_b, :, :, :, masked_t].mean(-1) # d k c
silence_tensor = maybe_clamp(
torch.einsum("bkchw,dkc->bkdhw", image_feats_by_head, silent_audio_feats))
silence_l1_loss = silence_tensor.abs().mean()
self.rolling_avg.add(f"loss/silence_l1", silence_l1_loss)
loss += silence_l1_loss * self.silence_l1
silence_l2_loss = silence_tensor.square().mean()
self.rolling_avg.add(f"loss/silence_l2", silence_l2_loss)
loss += silence_l2_loss * self.silence_l2
else:
pass
if self.neg_audio_weight > 0 and self.neg_audio:
b, t = audio_pos_mask.shape
negative_weight = ((1 - audio_pos_mask) * audio_mask.to(sims)).reshape(b, 1, 1, 1, 1, t)
negative_weight = torch.broadcast_to(negative_weight, paired_sim.shape)
if negative_weight.sum() > 0:
neg_audio_loss = (paired_sim.square() * negative_weight).sum() \
/ negative_weight.sum().clamp_min(0.1)
self.rolling_avg.add(f"loss/neg_audio", neg_audio_loss)
self.rolling_avg.add(f"loss/neg_weight_avg", negative_weight.mean())
loss += neg_audio_loss * self.neg_audio_weight
else:
print("WARNING: No negative samples found in batch")
if self.tv_weight > 0:
tv_loss = (paired_sim[:, :, :, :, :, 1:] - paired_sim[:, :, :, :, :, :-1]).square().mean()
self.rolling_avg.add(f"loss/tv", tv_loss)
loss += tv_loss * self.tv_weight
self.log(f"cal/w", self.sim_cal.get_w())
if self.cal_balance_weight > 0.0:
cal_balance = (np.log(self.cal_init) - torch.log(self.sim_cal.get_w().clamp_min(.00000001))) \
.clamp_min(0).square().mean()
self.rolling_avg.add(f"loss/cal_balance", cal_balance)
loss += cal_balance * self.cal_balance_weight
if self.disentangle_weight > 0.0:
assert source is not None
assert self.sim_agg_heads % 2 == 0
dilation = self.sim_agg_heads // 2
sources_oh = F.one_hot(source, num_classes=2)
b, h = sources_oh.shape
sources_mask = 1 - torch.broadcast_to(sources_oh.unsqueeze(-1), (b, h, dilation)) \
.reshape(b, h * dilation).to(paired_sim)
disentangle_loss = torch.einsum("bkhwft,bk->bhwft", paired_sim, sources_mask).square().mean()
self.rolling_avg.add(f"loss/disentangle", disentangle_loss)
loss += disentangle_loss * self.disentangle_weight
if self.specialization_weight > 0.0 and self.sim_agg_heads > 1:
total_specialization_loss = 0.0
combos = list(combinations(range(self.sim_agg_heads), 2))
for i, j in combos:
specialization_loss_pair = (paired_sim[:, i].abs() * paired_sim[:, j].abs()).mean()
total_specialization_loss += specialization_loss_pair
avg_specialization_loss = total_specialization_loss / len(combos)
self.rolling_avg.add(f"loss/specialize", avg_specialization_loss)
loss += avg_specialization_loss * self.specialization_weight
if self.mixup_weight > 0.0:
b, _, h, w = image_mask.shape
neg_img_mask = torch.broadcast_to(
1 - image_mask.to(paired_sim).reshape(b, 1, h, w, 1, 1),
paired_sim.shape)
image_mixup_loss = (paired_sim * neg_img_mask).square().sum() / neg_img_mask.sum().clamp_min(0.1)
self.rolling_avg.add(f"loss/image_mixup", image_mixup_loss)
loss += image_mixup_loss * self.mixup_weight
sims = sims
loss += self.contrast_loss(sims)
self.rolling_avg.add(f"loss/total", loss)
return loss
def setup_hparams(self):
recalls = ['A_r1', 'A_r5', 'A_r10', 'I_r1', 'I_r5', 'I_r10']
if self.trainer.datamodule.use_extra_val_sets:
datasets = ["Places", "AudioSet"]
else:
datasets = ["Val"]
heads = ["total"]
metric_names = [
"hp/speech_basic_ap", "hp/speech_advanced_ap", "hp/sound_basic_ap",
"hp/speech_basic_iou", "hp/speech_advanced_iou", "hp/sound_basic_iou",
]
for dataset in datasets:
for head in heads:
for recall in recalls:
metric_names.append(f"hp/{dataset}/{head}/{recall}")
if self.sim_agg_heads == 2:
metric_names.extend(["hp/ap_dis", "hp/act_dis"])
if hasattr(self.trainer, "datamodule"):
all_hparams = {**self.hparams, **self.trainer.datamodule.hparams}
else:
all_hparams = self.hparams
starting_values = {n: torch.nan for n in metric_names}
self.logger.log_hyperparams(all_hparams, starting_values)
def on_train_start(self):
self.setup_hparams()
self.hparams_logged = True
def on_train_batch_start(self, batch, batch_idx):
remake_optimizers = False
if isinstance(self.image_aligner, ProgressiveGrowing):
should_remake = self.image_aligner.maybe_change_phase(self.global_step)
remake_optimizers = remake_optimizers or should_remake
if isinstance(self.audio_aligner, ProgressiveGrowing):
should_remake = self.audio_aligner.maybe_change_phase(self.global_step)
remake_optimizers = remake_optimizers or should_remake
if remake_optimizers:
raise NotImplementedError()
def _combine_preds(self, all_preds):
temp = {}
new_preds = {}
# Collect tensors for each key into lists
for d in all_preds:
for key, value in d.items():
if isinstance(value, torch.Tensor):
if key not in temp:
temp[key] = []
temp[key].append(value)
# Concatenate all tensors for each key using a single call to torch.cat
for key, tensor_list in temp.items():
new_preds[key] = torch.cat(tensor_list)
return new_preds
def training_step(self, batch, batch_idx):
assert batch[IMAGE_INPUT].shape[1] == 1
preds = self.forward(batch)
if DATA_SOURCE in batch:
preds[DATA_SOURCE] = batch[DATA_SOURCE]
if self.trainer.world_size > 1 and self.gather_tensors:
for k, v in preds.items():
new_v = v.contiguous()
preds[k] = torch.cat(GatherLayer.apply(new_v), dim=0)
if self.memory_buffer_size > 0:
new_preds = self._combine_preds(list(self.memory_buffer) + [preds])
else:
new_preds = preds
loss = self.loss(new_preds)
if self.memory_buffer_size > 0:
self.memory_buffer.append(self._recursive_detach(preds, gather=False))
if self.trainer.is_global_zero and self.global_step % 50 == 1:
writer = self.logger.experiment
self.rolling_avg.logall(lambda k, v: writer.add_scalar(k, v, global_step=self.global_step))
if self.trainer.scaler is not None:
self.log("loss_scale", self.trainer.scaler.get_scale())
if self.global_step % 10000 == 0 and self.global_step > 0:
print("RESETTING TFEVENT FILE")
self.logger.experiment.close()
self.logger.experiment._get_file_writer()
return loss
def on_validation_start(self) -> None:
if not self.hparams_logged:
self.setup_hparams()
self.hparams_logged = True
def _auto_gather(self, t):
if t.dtype == torch.bool:
t = t.to(torch.float)
if self.trainer.num_devices == 1:
return t.cpu()
t = torch.clone(t).contiguous()
if self.trainer.is_global_zero:
gather_list = [torch.zeros_like(t) for _ in range(dist.get_world_size())]
dist.gather(t, gather_list)
return torch.cat(gather_list, dim=0).cpu()
else:
dist.gather(t)
def validation_step(self, batch, batch_idx, dataloader_idx=0):
with torch.no_grad():
preds = self.forward(batch)
ret = {}
for k in preds.keys():
if k in preds:
ret[k] = self._auto_gather(preds[k])
batch_keys = [IMAGE_INPUT, "spec", "semseg", "num_pixels_per_class", 'total_length']
for k in batch_keys:
if k in batch:
ret[k] = self._auto_gather(batch[k])
if "metadata" in batch:
if isinstance(batch["metadata"]["id"], torch.Tensor):
ret["id"] = self._auto_gather(batch["metadata"]["id"])
ret["index"] = self._auto_gather(batch["metadata"]["index"])
return ret
def _calc_recalls(self, sim):
top_10_a = sim.topk(10, 0).indices == torch.arange(sim.shape[0]).unsqueeze(0)
top_10_i = (sim.topk(10, 1).indices == torch.arange(sim.shape[0]).unsqueeze(1)).permute(1, 0)
a_recall = lambda p: top_10_a[0:p].any(0).to(sim).mean()
i_recall = lambda p: top_10_i[0:p].any(0).to(sim).mean()
return {'A_r1': a_recall(1),
'A_r5': a_recall(5),
'A_r10': a_recall(10),
'I_r1': i_recall(1),
'I_r5': i_recall(5),
'I_r10': i_recall(10)}
def calc_recalls(self, preds, dataset):
sim = self.sim_agg.forward_batched(
preds=preds,
agg_heads=False,
batch_size=4,
).cpu()
all_metrics = dict()
for k, v in self._calc_recalls(sim.sum(-1)).items():
all_metrics[f"hp/{dataset}/total/" + k] = v
return all_metrics
def retrieval_validation(self, outputs, dataset_name):
if len(outputs) == 0:
return
if self.trainer.is_global_zero:
results = flatten_preds(outputs)
if not self.trainer.sanity_checking:
print(results[IMAGE_FEATS].shape[0])
# assert (results[IMAGE_FEATS].shape[0] == 1000)
results[IMAGE_FEATS] = results[IMAGE_FEATS].cpu()
results[AUDIO_FEATS] = results[AUDIO_FEATS].cuda()
if self.sim_use_cls:
results[AUDIO_CLS] = results[AUDIO_CLS].cuda()
results[AUDIO_CLS] = results[AUDIO_CLS].cuda()
results[AUDIO_MASK] = results[AUDIO_MASK].cuda()
recalls = self.calc_recalls(results, dataset_name)
results[IMAGE_FEATS] = results[IMAGE_FEATS].cuda()
writer = self.logger.experiment
print("here")
for name, v in recalls.items():
writer.add_scalar(f"{name}", v, self.global_step + 1)
def semseg_validation(self, speech_preds, sound_preds):
if self.trainer.is_global_zero:
from eval_utils import get_paired_heatmaps
def prep_preds(preds, loader):
results = flatten_preds(preds)
metadata = loader.dataset.metadata
ordered_metadata = metadata.iloc[results["index"].numpy(), :].copy()
ordered_metadata["order"] = range(len(ordered_metadata))
return results, ordered_metadata
[_, _, speech_loader, sound_loader] = self.trainer.val_dataloaders
speech_results, speech_metadata = prep_preds(speech_preds, speech_loader)
sound_results, sound_metadata = prep_preds(sound_preds, sound_loader)
self.sound_metrics, unique_sound_indices = get_paired_heatmaps(
self, sound_results, sound_metadata["ade_class_id"], None)
self.speech_metrics, unique_word_indices = get_paired_heatmaps(
self, speech_results, speech_metadata["ade_class_id"], speech_metadata["timing"])
writer = self.logger.experiment
all_metrics = {
**{"sound_" + k: v for k, v in self.sound_metrics.items()},
**{"speech_" + k: v for k, v in self.speech_metrics.items()},
}
for k, v in all_metrics.items():
writer.add_scalar(f"hp/{k}", torch.tensor(v).mean(), self.global_step + 1)
def disentangle_validation(self, word_preds, sound_preds):
if len(word_preds) == 0 or len(sound_preds) == 0:
return
if self.trainer.is_global_zero:
word_preds = flatten_preds(word_preds)
sound_preds = flatten_preds(sound_preds)
word_scores = self.sim_agg.get_pairwise_sims(
word_preds,
raw=False,
agg_sim=True,
agg_heads=False,
)
sound_scores = self.sim_agg.get_pairwise_sims(
sound_preds,
raw=False,
agg_sim=True,
agg_heads=False,
)
all_scores = torch.cat([word_scores, sound_scores], dim=0)
all_scores -= all_scores.min(dim=0, keepdim=True).values
all_scores /= all_scores.max(dim=0, keepdim=True).values.clamp_min(.0001)
is_words = torch.cat([
torch.ones(word_scores.shape[0]),
torch.zeros(sound_scores.shape[0])], dim=0).to(torch.bool)
assert all_scores.shape[1] == 2
ap_matrix = torch.zeros(2, 2)
act_matrix = torch.zeros(2, 2)
for head in range(2):
# writer.add_histogram(f"h{head}_all_scores", all_scores[:, head])
for dataset_num in range(2):
if dataset_num == 0:
labels = is_words
else:
labels = ~is_words
ap_matrix[head, dataset_num] = binary_average_precision(
all_scores[:, head].cpu(), labels.to(torch.int64).cpu())
act_matrix[head, dataset_num] = 1 - (all_scores[:, head][labels]).mean()
ap_dis = max(.5 * (ap_matrix[0, 0] + ap_matrix[1, 1]),
.5 * (ap_matrix[0, 1] + ap_matrix[1, 0]))
act_dis = max(.5 * (act_matrix[0, 0] + act_matrix[1, 1]),
.5 * (act_matrix[0, 1] + act_matrix[1, 0]))
print("AP", ap_matrix)
print("AP dis", ap_dis)
print("Act", act_matrix)
print("Act dis", act_dis)
writer = self.logger.experiment
writer.add_scalar("hp/ap_dis", ap_dis, self.global_step + 1)
writer.add_scalar("hp/act_dis", act_dis, self.global_step + 1)
def validation_epoch_end(self, outputs) -> None:
print("Val end")
with torch.no_grad():
if self.trainer.datamodule.use_extra_val_sets:
if self.sim_agg_heads == 2:
self.disentangle_validation(outputs[0], outputs[1])
self.retrieval_validation(outputs[0], "Places")
self.retrieval_validation(outputs[1], "AudioSet")
self.semseg_validation(outputs[2], outputs[3])
else:
print("HERE!")
self.retrieval_validation(outputs, "Val")
writer = self.logger.experiment
writer.flush()
def _recursive_detach(self, obj, gather=True):
if isinstance(obj, torch.Tensor):
if gather:
return self._auto_gather(obj)
else:
obj.detach()
elif isinstance(obj, dict):
return {k: self._recursive_detach(v, gather) for k, v in obj.items()}
elif isinstance(obj, list):
return [self._recursive_detach(v, gather) for v in obj]
else:
return obj
def predict_step(self, batch, batch_idx: int, dataloader_idx: int = 0):
with torch.no_grad():
predictions = {}
for k, v in batch.items():
predictions[k] = self._recursive_detach(v)
for k, v in self.forward(batch).items():
predictions[k] = self._auto_gather(v)
return predictions
def _configure_optimizers(self, full_train, lr):
params = [
*self.audio_aligner.parameters(),
*self.image_aligner.parameters(),
*self.sim_cal.parameters(),
*self.sim_agg.parameters()
]
if (self.finetune_image_model or self.image_lora) and full_train:
params.extend(self.image_model.parameters())
if (self.finetune_audio_model or self.audio_lora) and full_train:
params.extend(self.audio_model.parameters())
if self.learn_audio_cls:
params.append(self.audio_cls)
last_epoch = self.global_step - 1
if self.optimizer == "adam":
opt = torch.optim.Adam(params, lr=lr, eps=1e-7)
elif self.optimizer == "nadam":
opt = torch.optim.NAdam(params, lr=lr, eps=1e-7)
else:
raise ValueError(f"Unknown optimizer {self.optimizer}")
if self.lr_schedule == "sgdr":
scheduler = CosineAnnealingWarmRestarts(
opt, self.lr_cycle_length, 2, eta_min=lr * 2e-2, last_epoch=last_epoch)
else:
scheduler = LambdaLR(opt, lr_lambda=lambda step: 1.0, last_epoch=last_epoch)
if self.lr_warmup > 0:
warmup = LambdaLR(
opt,
lr_lambda=lambda step: min(max(float(step), 0.0) / self.lr_warmup, 1.0),
last_epoch=last_epoch,
)
scheduler = SequentialLR(
opt,
schedulers=[warmup, scheduler],
milestones=[self.lr_warmup],
last_epoch=last_epoch)
scheduler = {"scheduler": scheduler, "interval": "step"}
return [opt], [scheduler]
def configure_optimizers(self):
if self.full_train:
return self._configure_optimizers(self.full_train, self.lr)
else:
return self._configure_optimizers(self.full_train, self.pretrain_lr)
@hydra.main(config_path="configs", config_name="av_align.yaml", version_base=None)
def my_app(cfg: DictConfig) -> None:
print(OmegaConf.to_yaml(cfg))
seed_everything(cfg.seed, workers=True)
exp_name = f"{cfg.resume_prefix}"
if cfg.image_model_type == "dino8":
patch_size = 8 * cfg.image_pool_width
elif cfg.image_model_type == "cavmae":
patch_size = 16 * cfg.image_pool_width
elif cfg.image_model_type == "imagebind":
patch_size = 16 * cfg.image_pool_width
elif cfg.image_model_type == "clip":
patch_size = 16 * cfg.image_pool_width
elif cfg.image_model_type == "cavmae-mixed":
patch_size = 16 * cfg.image_pool_width
elif cfg.image_model_type == "dinov2":
patch_size = 14 * cfg.image_pool_width
else:
raise ValueError(f"Unknown patch size for model {cfg.image_model_type}")
datamodule = AVDataModule(
dataset_name=cfg.dataset_name,
load_size=cfg.load_size,
image_aug=cfg.image_aug,
audio_aug=cfg.audio_aug,
extra_audio_masking=cfg.extra_audio_masking,
audio_model_type=cfg.audio_model_type,
pytorch_data_dir=cfg.pytorch_data_dir,
use_cached_embs=cfg.use_cached_embs,
batch_size=cfg.batch_size,
num_workers=cfg.num_workers,
audio_level=cfg.audio_level,
neg_audio=cfg.neg_audio,
use_original_val_set=not cfg.use_extra_val_sets,
use_extra_val_sets=cfg.use_extra_val_sets,
data_for_plotting=False,
quad_mixup=cfg.quad_mixup,
bg_mixup=cfg.bg_mixup,
patch_mixup=cfg.patch_mixup,
patch_size=patch_size
)
datamodule.maybe_unpack(remove_source=cfg.submitting_to_aml)
aligner = create_model_from_cfg(LitAVAligner, cfg, {})
if cfg.starting_weights is not None:
loaded = torch.load(join(cfg.output_root, cfg.starting_weights), map_location='cpu')
state = loaded["state_dict"]
aligner.load_state_dict(state, strict=cfg.load_strict)
del state
del loaded
if cfg.num_gpus > 1:
# strategy = "ddp_sharded" # _find_unused_parameters_true"
strategy = "ddp" # _find_unused_parameters_true"
else:
strategy = "auto"
if cfg.dataset_name in {"places-audio", "mixed", "audio-set", "mixed-full"}:
val_args = dict(check_val_every_n_epoch=2)
elif cfg.dataset_name in {"dolphin"}:
val_args = dict(check_val_every_n_epoch=5)
else:
val_args = dict(val_check_interval=10000)
# val_args = dict(val_check_interval=1000)
def maybe_get_ckpt(ckpt_dir):
if cfg.auto_resume and os.path.exists(ckpt_dir):
print(f"Attempting to resume from {ckpt_dir}")
candidates = os.listdir(ckpt_dir)
assert (len(candidates) == 1)
return join(ckpt_dir, candidates[0])
elif cfg.auto_resume:
print(f"Could not find checkpoint at {ckpt_dir}")
return None
else:
return None
log_dir = join(cfg.output_root, "logs", cfg.grouping_name, exp_name)
ckpt_dir = join(cfg.output_root, "checkpoints", cfg.grouping_name, exp_name)
import gc
torch.cuda.empty_cache()
gc.collect()
def run_exp(aligner, full_train):
trainer_args = dict(
accelerator='gpu',
strategy=strategy,
devices=cfg.num_gpus,
num_sanity_val_steps=cfg.num_sanity_val_steps,
log_every_n_steps=50,
reload_dataloaders_every_n_epochs=10,
precision="16",
# profiler="simple",
# precision="bf16",
max_steps=cfg.max_steps,
**val_args)
aligner.set_full_train(full_train)
if full_train:
suffix = "train"
else:
suffix = "pretrain"
trainer_args["max_steps"] = cfg.pretrain_steps
print(f"Starting {suffix} phase")
logger = TensorBoardLogger(join(log_dir, suffix), default_hp_metric=False)
callbacks = [
ModelCheckpoint(join(ckpt_dir, suffix), every_n_epochs=1),
LearningRateMonitor(logging_interval='step'),
]
Trainer(logger=logger,
callbacks=callbacks,
**trainer_args).fit(
aligner,
datamodule=datamodule,
ckpt_path=maybe_get_ckpt(join(ckpt_dir, suffix)))
train_chkpt = maybe_get_ckpt(join(ckpt_dir, "train"))
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
if cfg.pretrain_steps > 0 and train_chkpt is None:
print("---"*10)
print("Setup with full_train = False")
run_exp(aligner, full_train=False)
print("---"*10)
else:
print("---"*10)
print("Setup with full_train = False")
run_exp(aligner, full_train=True)
print("---"*10)
if __name__ == "__main__":
my_app()