Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import gradio as gr
|
2 |
import nltk
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
@@ -56,3 +56,65 @@ iface = gr.Interface(
|
|
56 |
|
57 |
# Launch the Gradio Interface
|
58 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""import gradio as gr
|
2 |
import nltk
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
|
|
56 |
|
57 |
# Launch the Gradio Interface
|
58 |
iface.launch()
|
59 |
+
"""
|
60 |
+
import gradio as gr
|
61 |
+
import nltk
|
62 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
63 |
+
|
64 |
+
nltk.download('punkt')
|
65 |
+
|
66 |
+
def fragment_text(text, tokenizer):
|
67 |
+
sentences = nltk.tokenize.sent_tokenize(text)
|
68 |
+
max_len = tokenizer.max_len_single_sentence
|
69 |
+
|
70 |
+
chunks = []
|
71 |
+
chunk = ""
|
72 |
+
count = -1
|
73 |
+
|
74 |
+
for sentence in sentences:
|
75 |
+
count += 1
|
76 |
+
combined_length = len(tokenizer.tokenize(sentence)) + len(chunk)
|
77 |
+
|
78 |
+
if combined_length <= max_len:
|
79 |
+
chunk += sentence + " "
|
80 |
+
else:
|
81 |
+
chunks.append(chunk.strip())
|
82 |
+
chunk = sentence + " "
|
83 |
+
|
84 |
+
if chunk != "":
|
85 |
+
chunks.append(chunk.strip())
|
86 |
+
|
87 |
+
return chunks
|
88 |
+
|
89 |
+
|
90 |
+
def summarize_text(text, tokenizer, model):
|
91 |
+
chunks = fragment_text(text, tokenizer)
|
92 |
+
|
93 |
+
summaries = []
|
94 |
+
for chunk in chunks:
|
95 |
+
input = tokenizer(chunk, return_tensors='pt')
|
96 |
+
output = model.generate(**input)
|
97 |
+
summary = tokenizer.decode(*output, skip_special_tokens=True)
|
98 |
+
summaries.append(summary)
|
99 |
+
|
100 |
+
final_summary = " ".join(summaries)
|
101 |
+
return final_summary
|
102 |
+
|
103 |
+
checkpoint = "tclopess/bart_samsum"
|
104 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
105 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
106 |
+
|
107 |
+
def summarize_and_display(text):
|
108 |
+
summary = summarize_text(text, tokenizer, model)
|
109 |
+
return summary
|
110 |
+
|
111 |
+
iface = gr.Interface(
|
112 |
+
fn=summarize_and_display,
|
113 |
+
inputs=gr.Textbox(label="Enter text to summarize:"),
|
114 |
+
outputs=gr.Textbox(label="Summary:"),
|
115 |
+
live=True,
|
116 |
+
title="Text Summarizer with Button",
|
117 |
+
description="Click the 'Summarize' button to generate a summary of the text.",
|
118 |
+
)
|
119 |
+
|
120 |
+
iface.launch(share=True)
|