Update app.py
Browse files
app.py
CHANGED
@@ -60,38 +60,76 @@ iface = gr.Interface(
|
|
60 |
|
61 |
iface.launch(share=True)
|
62 |
"""
|
|
|
63 |
import gradio as gr
|
64 |
import nltk
|
65 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
66 |
|
67 |
nltk.download('punkt')
|
68 |
|
|
|
69 |
def fragment_text(text, tokenizer):
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
def summarize_text(text, tokenizer, model):
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
checkpoint = "tclopess/bart_samsum"
|
76 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
77 |
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
iface = gr.Interface(
|
83 |
-
fn=
|
84 |
-
inputs=
|
|
|
|
|
|
|
85 |
outputs=gr.Textbox(label="Summary:"),
|
|
|
86 |
title="Text Summarizer with Button",
|
87 |
)
|
88 |
|
89 |
-
|
90 |
-
iface.launch(share=True)
|
91 |
-
|
92 |
-
gr.Interface(
|
93 |
-
summarize_text_button,
|
94 |
-
inputs=None,
|
95 |
-
outputs=None,
|
96 |
-
title="Click to Summarize"
|
97 |
-
).launch()
|
|
|
60 |
|
61 |
iface.launch(share=True)
|
62 |
"""
|
63 |
+
|
64 |
import gradio as gr
|
65 |
import nltk
|
66 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
67 |
|
68 |
nltk.download('punkt')
|
69 |
|
70 |
+
|
71 |
def fragment_text(text, tokenizer):
|
72 |
+
sentences = nltk.tokenize.sent_tokenize(text)
|
73 |
+
max_len = tokenizer.max_len_single_sentence
|
74 |
+
|
75 |
+
chunks = []
|
76 |
+
chunk = ""
|
77 |
+
count = -1
|
78 |
+
|
79 |
+
for sentence in sentences:
|
80 |
+
count += 1
|
81 |
+
combined_length = len(tokenizer.tokenize(sentence)) + len(chunk)
|
82 |
+
|
83 |
+
if combined_length <= max_len:
|
84 |
+
chunk += sentence + " "
|
85 |
+
else:
|
86 |
+
chunks.append(chunk.strip())
|
87 |
+
chunk = sentence + " "
|
88 |
+
|
89 |
+
if chunk != "":
|
90 |
+
chunks.append(chunk.strip())
|
91 |
+
|
92 |
+
return chunks
|
93 |
+
|
94 |
|
95 |
def summarize_text(text, tokenizer, model):
|
96 |
+
chunks = fragment_text(text, tokenizer)
|
97 |
+
|
98 |
+
summaries = []
|
99 |
+
for chunk in chunks:
|
100 |
+
input = tokenizer(chunk, return_tensors='pt')
|
101 |
+
output = model.generate(**input)
|
102 |
+
summary = tokenizer.decode(*output, skip_special_tokens=True)
|
103 |
+
summaries.append(summary)
|
104 |
+
|
105 |
+
final_summary = " ".join(summaries)
|
106 |
+
return final_summary
|
107 |
+
|
108 |
|
109 |
checkpoint = "tclopess/bart_samsum"
|
110 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
111 |
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
112 |
|
113 |
+
|
114 |
+
def summarize_and_display(text):
|
115 |
+
summary = summarize_text(text, tokenizer, model)
|
116 |
+
return summary
|
117 |
+
|
118 |
+
|
119 |
+
def start_summarization(text):
|
120 |
+
summary = summarize_and_display(text)
|
121 |
+
gr.update(summary)
|
122 |
+
|
123 |
|
124 |
iface = gr.Interface(
|
125 |
+
fn=start_summarization,
|
126 |
+
inputs=[
|
127 |
+
gr.Textbox(label="Enter text to summarize:"),
|
128 |
+
gr.Button(label="Summarize"),
|
129 |
+
],
|
130 |
outputs=gr.Textbox(label="Summary:"),
|
131 |
+
live=True,
|
132 |
title="Text Summarizer with Button",
|
133 |
)
|
134 |
|
135 |
+
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|