Spaces:
Running
Running
# =================================================================== | |
# | |
# Copyright (c) 2014, Legrandin <[email protected]> | |
# All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions | |
# are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# 2. Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in | |
# the documentation and/or other materials provided with the | |
# distribution. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | |
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | |
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
# POSSIBILITY OF SUCH DAMAGE. | |
# =================================================================== | |
import sys | |
from Crypto.Util.py3compat import tobytes, is_native_int | |
from Crypto.Util._raw_api import (backend, load_lib, | |
get_raw_buffer, get_c_string, | |
null_pointer, create_string_buffer, | |
c_ulong, c_size_t, c_uint8_ptr) | |
from ._IntegerBase import IntegerBase | |
gmp_defs = """typedef unsigned long UNIX_ULONG; | |
typedef struct { int a; int b; void *c; } MPZ; | |
typedef MPZ mpz_t[1]; | |
typedef UNIX_ULONG mp_bitcnt_t; | |
void __gmpz_init (mpz_t x); | |
void __gmpz_init_set (mpz_t rop, const mpz_t op); | |
void __gmpz_init_set_ui (mpz_t rop, UNIX_ULONG op); | |
UNIX_ULONG __gmpz_get_ui (const mpz_t op); | |
void __gmpz_set (mpz_t rop, const mpz_t op); | |
void __gmpz_set_ui (mpz_t rop, UNIX_ULONG op); | |
void __gmpz_add (mpz_t rop, const mpz_t op1, const mpz_t op2); | |
void __gmpz_add_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2); | |
void __gmpz_sub_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2); | |
void __gmpz_addmul (mpz_t rop, const mpz_t op1, const mpz_t op2); | |
void __gmpz_addmul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2); | |
void __gmpz_submul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2); | |
void __gmpz_import (mpz_t rop, size_t count, int order, size_t size, | |
int endian, size_t nails, const void *op); | |
void * __gmpz_export (void *rop, size_t *countp, int order, | |
size_t size, | |
int endian, size_t nails, const mpz_t op); | |
size_t __gmpz_sizeinbase (const mpz_t op, int base); | |
void __gmpz_sub (mpz_t rop, const mpz_t op1, const mpz_t op2); | |
void __gmpz_mul (mpz_t rop, const mpz_t op1, const mpz_t op2); | |
void __gmpz_mul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2); | |
int __gmpz_cmp (const mpz_t op1, const mpz_t op2); | |
void __gmpz_powm (mpz_t rop, const mpz_t base, const mpz_t exp, const | |
mpz_t mod); | |
void __gmpz_powm_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp, | |
const mpz_t mod); | |
void __gmpz_pow_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp); | |
void __gmpz_sqrt(mpz_t rop, const mpz_t op); | |
void __gmpz_mod (mpz_t r, const mpz_t n, const mpz_t d); | |
void __gmpz_neg (mpz_t rop, const mpz_t op); | |
void __gmpz_abs (mpz_t rop, const mpz_t op); | |
void __gmpz_and (mpz_t rop, const mpz_t op1, const mpz_t op2); | |
void __gmpz_ior (mpz_t rop, const mpz_t op1, const mpz_t op2); | |
void __gmpz_clear (mpz_t x); | |
void __gmpz_tdiv_q_2exp (mpz_t q, const mpz_t n, mp_bitcnt_t b); | |
void __gmpz_fdiv_q (mpz_t q, const mpz_t n, const mpz_t d); | |
void __gmpz_mul_2exp (mpz_t rop, const mpz_t op1, mp_bitcnt_t op2); | |
int __gmpz_tstbit (const mpz_t op, mp_bitcnt_t bit_index); | |
int __gmpz_perfect_square_p (const mpz_t op); | |
int __gmpz_jacobi (const mpz_t a, const mpz_t b); | |
void __gmpz_gcd (mpz_t rop, const mpz_t op1, const mpz_t op2); | |
UNIX_ULONG __gmpz_gcd_ui (mpz_t rop, const mpz_t op1, | |
UNIX_ULONG op2); | |
void __gmpz_lcm (mpz_t rop, const mpz_t op1, const mpz_t op2); | |
int __gmpz_invert (mpz_t rop, const mpz_t op1, const mpz_t op2); | |
int __gmpz_divisible_p (const mpz_t n, const mpz_t d); | |
int __gmpz_divisible_ui_p (const mpz_t n, UNIX_ULONG d); | |
""" | |
if sys.platform == "win32": | |
raise ImportError("Not using GMP on Windows") | |
lib = load_lib("gmp", gmp_defs) | |
implementation = {"library": "gmp", "api": backend} | |
if hasattr(lib, "__mpir_version"): | |
raise ImportError("MPIR library detected") | |
# In order to create a function that returns a pointer to | |
# a new MPZ structure, we need to break the abstraction | |
# and know exactly what ffi backend we have | |
if implementation["api"] == "ctypes": | |
from ctypes import Structure, c_int, c_void_p, byref | |
class _MPZ(Structure): | |
_fields_ = [('_mp_alloc', c_int), | |
('_mp_size', c_int), | |
('_mp_d', c_void_p)] | |
def new_mpz(): | |
return byref(_MPZ()) | |
else: | |
# We are using CFFI | |
from Crypto.Util._raw_api import ffi | |
def new_mpz(): | |
return ffi.new("MPZ*") | |
# Lazy creation of GMP methods | |
class _GMP(object): | |
def __getattr__(self, name): | |
if name.startswith("mpz_"): | |
func_name = "__gmpz_" + name[4:] | |
elif name.startswith("gmp_"): | |
func_name = "__gmp_" + name[4:] | |
else: | |
raise AttributeError("Attribute %s is invalid" % name) | |
func = getattr(lib, func_name) | |
setattr(self, name, func) | |
return func | |
_gmp = _GMP() | |
class IntegerGMP(IntegerBase): | |
"""A fast, arbitrary precision integer""" | |
_zero_mpz_p = new_mpz() | |
_gmp.mpz_init_set_ui(_zero_mpz_p, c_ulong(0)) | |
def __init__(self, value): | |
"""Initialize the integer to the given value.""" | |
self._mpz_p = new_mpz() | |
self._initialized = False | |
if isinstance(value, float): | |
raise ValueError("A floating point type is not a natural number") | |
if is_native_int(value): | |
_gmp.mpz_init(self._mpz_p) | |
self._initialized = True | |
if value == 0: | |
return | |
tmp = new_mpz() | |
_gmp.mpz_init(tmp) | |
try: | |
positive = value >= 0 | |
reduce = abs(value) | |
slots = (reduce.bit_length() - 1) // 32 + 1 | |
while slots > 0: | |
slots = slots - 1 | |
_gmp.mpz_set_ui(tmp, | |
c_ulong(0xFFFFFFFF & (reduce >> (slots * 32)))) | |
_gmp.mpz_mul_2exp(tmp, tmp, c_ulong(slots * 32)) | |
_gmp.mpz_add(self._mpz_p, self._mpz_p, tmp) | |
finally: | |
_gmp.mpz_clear(tmp) | |
if not positive: | |
_gmp.mpz_neg(self._mpz_p, self._mpz_p) | |
elif isinstance(value, IntegerGMP): | |
_gmp.mpz_init_set(self._mpz_p, value._mpz_p) | |
self._initialized = True | |
else: | |
raise NotImplementedError | |
# Conversions | |
def __int__(self): | |
tmp = new_mpz() | |
_gmp.mpz_init_set(tmp, self._mpz_p) | |
try: | |
value = 0 | |
slot = 0 | |
while _gmp.mpz_cmp(tmp, self._zero_mpz_p) != 0: | |
lsb = _gmp.mpz_get_ui(tmp) & 0xFFFFFFFF | |
value |= lsb << (slot * 32) | |
_gmp.mpz_tdiv_q_2exp(tmp, tmp, c_ulong(32)) | |
slot = slot + 1 | |
finally: | |
_gmp.mpz_clear(tmp) | |
if self < 0: | |
value = -value | |
return int(value) | |
def __str__(self): | |
return str(int(self)) | |
def __repr__(self): | |
return "Integer(%s)" % str(self) | |
# Only Python 2.x | |
def __hex__(self): | |
return hex(int(self)) | |
# Only Python 3.x | |
def __index__(self): | |
return int(self) | |
def to_bytes(self, block_size=0, byteorder='big'): | |
"""Convert the number into a byte string. | |
This method encodes the number in network order and prepends | |
as many zero bytes as required. It only works for non-negative | |
values. | |
:Parameters: | |
block_size : integer | |
The exact size the output byte string must have. | |
If zero, the string has the minimal length. | |
byteorder : string | |
'big' for big-endian integers (default), 'little' for litte-endian. | |
:Returns: | |
A byte string. | |
:Raise ValueError: | |
If the value is negative or if ``block_size`` is | |
provided and the length of the byte string would exceed it. | |
""" | |
if self < 0: | |
raise ValueError("Conversion only valid for non-negative numbers") | |
buf_len = (_gmp.mpz_sizeinbase(self._mpz_p, 2) + 7) // 8 | |
if buf_len > block_size > 0: | |
raise ValueError("Number is too big to convert to byte string" | |
" of prescribed length") | |
buf = create_string_buffer(buf_len) | |
_gmp.mpz_export( | |
buf, | |
null_pointer, # Ignore countp | |
1, # Big endian | |
c_size_t(1), # Each word is 1 byte long | |
0, # Endianess within a word - not relevant | |
c_size_t(0), # No nails | |
self._mpz_p) | |
result = b'\x00' * max(0, block_size - buf_len) + get_raw_buffer(buf) | |
if byteorder == 'big': | |
pass | |
elif byteorder == 'little': | |
result = bytearray(result) | |
result.reverse() | |
result = bytes(result) | |
else: | |
raise ValueError("Incorrect byteorder") | |
return result | |
def from_bytes(byte_string, byteorder='big'): | |
"""Convert a byte string into a number. | |
:Parameters: | |
byte_string : byte string | |
The input number, encoded in network order. | |
It can only be non-negative. | |
byteorder : string | |
'big' for big-endian integers (default), 'little' for litte-endian. | |
:Return: | |
The ``Integer`` object carrying the same value as the input. | |
""" | |
result = IntegerGMP(0) | |
if byteorder == 'big': | |
pass | |
elif byteorder == 'little': | |
byte_string = bytearray(byte_string) | |
byte_string.reverse() | |
else: | |
raise ValueError("Incorrect byteorder") | |
_gmp.mpz_import( | |
result._mpz_p, | |
c_size_t(len(byte_string)), # Amount of words to read | |
1, # Big endian | |
c_size_t(1), # Each word is 1 byte long | |
0, # Endianess within a word - not relevant | |
c_size_t(0), # No nails | |
c_uint8_ptr(byte_string)) | |
return result | |
# Relations | |
def _apply_and_return(self, func, term): | |
if not isinstance(term, IntegerGMP): | |
term = IntegerGMP(term) | |
return func(self._mpz_p, term._mpz_p) | |
def __eq__(self, term): | |
if not (isinstance(term, IntegerGMP) or is_native_int(term)): | |
return False | |
return self._apply_and_return(_gmp.mpz_cmp, term) == 0 | |
def __ne__(self, term): | |
if not (isinstance(term, IntegerGMP) or is_native_int(term)): | |
return True | |
return self._apply_and_return(_gmp.mpz_cmp, term) != 0 | |
def __lt__(self, term): | |
return self._apply_and_return(_gmp.mpz_cmp, term) < 0 | |
def __le__(self, term): | |
return self._apply_and_return(_gmp.mpz_cmp, term) <= 0 | |
def __gt__(self, term): | |
return self._apply_and_return(_gmp.mpz_cmp, term) > 0 | |
def __ge__(self, term): | |
return self._apply_and_return(_gmp.mpz_cmp, term) >= 0 | |
def __nonzero__(self): | |
return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) != 0 | |
__bool__ = __nonzero__ | |
def is_negative(self): | |
return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) < 0 | |
# Arithmetic operations | |
def __add__(self, term): | |
result = IntegerGMP(0) | |
if not isinstance(term, IntegerGMP): | |
try: | |
term = IntegerGMP(term) | |
except NotImplementedError: | |
return NotImplemented | |
_gmp.mpz_add(result._mpz_p, | |
self._mpz_p, | |
term._mpz_p) | |
return result | |
def __sub__(self, term): | |
result = IntegerGMP(0) | |
if not isinstance(term, IntegerGMP): | |
try: | |
term = IntegerGMP(term) | |
except NotImplementedError: | |
return NotImplemented | |
_gmp.mpz_sub(result._mpz_p, | |
self._mpz_p, | |
term._mpz_p) | |
return result | |
def __mul__(self, term): | |
result = IntegerGMP(0) | |
if not isinstance(term, IntegerGMP): | |
try: | |
term = IntegerGMP(term) | |
except NotImplementedError: | |
return NotImplemented | |
_gmp.mpz_mul(result._mpz_p, | |
self._mpz_p, | |
term._mpz_p) | |
return result | |
def __floordiv__(self, divisor): | |
if not isinstance(divisor, IntegerGMP): | |
divisor = IntegerGMP(divisor) | |
if _gmp.mpz_cmp(divisor._mpz_p, | |
self._zero_mpz_p) == 0: | |
raise ZeroDivisionError("Division by zero") | |
result = IntegerGMP(0) | |
_gmp.mpz_fdiv_q(result._mpz_p, | |
self._mpz_p, | |
divisor._mpz_p) | |
return result | |
def __mod__(self, divisor): | |
if not isinstance(divisor, IntegerGMP): | |
divisor = IntegerGMP(divisor) | |
comp = _gmp.mpz_cmp(divisor._mpz_p, | |
self._zero_mpz_p) | |
if comp == 0: | |
raise ZeroDivisionError("Division by zero") | |
if comp < 0: | |
raise ValueError("Modulus must be positive") | |
result = IntegerGMP(0) | |
_gmp.mpz_mod(result._mpz_p, | |
self._mpz_p, | |
divisor._mpz_p) | |
return result | |
def inplace_pow(self, exponent, modulus=None): | |
if modulus is None: | |
if exponent < 0: | |
raise ValueError("Exponent must not be negative") | |
# Normal exponentiation | |
if exponent > 256: | |
raise ValueError("Exponent is too big") | |
_gmp.mpz_pow_ui(self._mpz_p, | |
self._mpz_p, # Base | |
c_ulong(int(exponent)) | |
) | |
else: | |
# Modular exponentiation | |
if not isinstance(modulus, IntegerGMP): | |
modulus = IntegerGMP(modulus) | |
if not modulus: | |
raise ZeroDivisionError("Division by zero") | |
if modulus.is_negative(): | |
raise ValueError("Modulus must be positive") | |
if is_native_int(exponent): | |
if exponent < 0: | |
raise ValueError("Exponent must not be negative") | |
if exponent < 65536: | |
_gmp.mpz_powm_ui(self._mpz_p, | |
self._mpz_p, | |
c_ulong(exponent), | |
modulus._mpz_p) | |
return self | |
exponent = IntegerGMP(exponent) | |
elif exponent.is_negative(): | |
raise ValueError("Exponent must not be negative") | |
_gmp.mpz_powm(self._mpz_p, | |
self._mpz_p, | |
exponent._mpz_p, | |
modulus._mpz_p) | |
return self | |
def __pow__(self, exponent, modulus=None): | |
result = IntegerGMP(self) | |
return result.inplace_pow(exponent, modulus) | |
def __abs__(self): | |
result = IntegerGMP(0) | |
_gmp.mpz_abs(result._mpz_p, self._mpz_p) | |
return result | |
def sqrt(self, modulus=None): | |
"""Return the largest Integer that does not | |
exceed the square root""" | |
if modulus is None: | |
if self < 0: | |
raise ValueError("Square root of negative value") | |
result = IntegerGMP(0) | |
_gmp.mpz_sqrt(result._mpz_p, | |
self._mpz_p) | |
else: | |
if modulus <= 0: | |
raise ValueError("Modulus must be positive") | |
modulus = int(modulus) | |
result = IntegerGMP(self._tonelli_shanks(int(self) % modulus, modulus)) | |
return result | |
def __iadd__(self, term): | |
if is_native_int(term): | |
if 0 <= term < 65536: | |
_gmp.mpz_add_ui(self._mpz_p, | |
self._mpz_p, | |
c_ulong(term)) | |
return self | |
if -65535 < term < 0: | |
_gmp.mpz_sub_ui(self._mpz_p, | |
self._mpz_p, | |
c_ulong(-term)) | |
return self | |
term = IntegerGMP(term) | |
_gmp.mpz_add(self._mpz_p, | |
self._mpz_p, | |
term._mpz_p) | |
return self | |
def __isub__(self, term): | |
if is_native_int(term): | |
if 0 <= term < 65536: | |
_gmp.mpz_sub_ui(self._mpz_p, | |
self._mpz_p, | |
c_ulong(term)) | |
return self | |
if -65535 < term < 0: | |
_gmp.mpz_add_ui(self._mpz_p, | |
self._mpz_p, | |
c_ulong(-term)) | |
return self | |
term = IntegerGMP(term) | |
_gmp.mpz_sub(self._mpz_p, | |
self._mpz_p, | |
term._mpz_p) | |
return self | |
def __imul__(self, term): | |
if is_native_int(term): | |
if 0 <= term < 65536: | |
_gmp.mpz_mul_ui(self._mpz_p, | |
self._mpz_p, | |
c_ulong(term)) | |
return self | |
if -65535 < term < 0: | |
_gmp.mpz_mul_ui(self._mpz_p, | |
self._mpz_p, | |
c_ulong(-term)) | |
_gmp.mpz_neg(self._mpz_p, self._mpz_p) | |
return self | |
term = IntegerGMP(term) | |
_gmp.mpz_mul(self._mpz_p, | |
self._mpz_p, | |
term._mpz_p) | |
return self | |
def __imod__(self, divisor): | |
if not isinstance(divisor, IntegerGMP): | |
divisor = IntegerGMP(divisor) | |
comp = _gmp.mpz_cmp(divisor._mpz_p, | |
divisor._zero_mpz_p) | |
if comp == 0: | |
raise ZeroDivisionError("Division by zero") | |
if comp < 0: | |
raise ValueError("Modulus must be positive") | |
_gmp.mpz_mod(self._mpz_p, | |
self._mpz_p, | |
divisor._mpz_p) | |
return self | |
# Boolean/bit operations | |
def __and__(self, term): | |
result = IntegerGMP(0) | |
if not isinstance(term, IntegerGMP): | |
term = IntegerGMP(term) | |
_gmp.mpz_and(result._mpz_p, | |
self._mpz_p, | |
term._mpz_p) | |
return result | |
def __or__(self, term): | |
result = IntegerGMP(0) | |
if not isinstance(term, IntegerGMP): | |
term = IntegerGMP(term) | |
_gmp.mpz_ior(result._mpz_p, | |
self._mpz_p, | |
term._mpz_p) | |
return result | |
def __rshift__(self, pos): | |
result = IntegerGMP(0) | |
if pos < 0: | |
raise ValueError("negative shift count") | |
if pos > 65536: | |
if self < 0: | |
return -1 | |
else: | |
return 0 | |
_gmp.mpz_tdiv_q_2exp(result._mpz_p, | |
self._mpz_p, | |
c_ulong(int(pos))) | |
return result | |
def __irshift__(self, pos): | |
if pos < 0: | |
raise ValueError("negative shift count") | |
if pos > 65536: | |
if self < 0: | |
return -1 | |
else: | |
return 0 | |
_gmp.mpz_tdiv_q_2exp(self._mpz_p, | |
self._mpz_p, | |
c_ulong(int(pos))) | |
return self | |
def __lshift__(self, pos): | |
result = IntegerGMP(0) | |
if not 0 <= pos < 65536: | |
raise ValueError("Incorrect shift count") | |
_gmp.mpz_mul_2exp(result._mpz_p, | |
self._mpz_p, | |
c_ulong(int(pos))) | |
return result | |
def __ilshift__(self, pos): | |
if not 0 <= pos < 65536: | |
raise ValueError("Incorrect shift count") | |
_gmp.mpz_mul_2exp(self._mpz_p, | |
self._mpz_p, | |
c_ulong(int(pos))) | |
return self | |
def get_bit(self, n): | |
"""Return True if the n-th bit is set to 1. | |
Bit 0 is the least significant.""" | |
if self < 0: | |
raise ValueError("no bit representation for negative values") | |
if n < 0: | |
raise ValueError("negative bit count") | |
if n > 65536: | |
return 0 | |
return bool(_gmp.mpz_tstbit(self._mpz_p, | |
c_ulong(int(n)))) | |
# Extra | |
def is_odd(self): | |
return _gmp.mpz_tstbit(self._mpz_p, 0) == 1 | |
def is_even(self): | |
return _gmp.mpz_tstbit(self._mpz_p, 0) == 0 | |
def size_in_bits(self): | |
"""Return the minimum number of bits that can encode the number.""" | |
if self < 0: | |
raise ValueError("Conversion only valid for non-negative numbers") | |
return _gmp.mpz_sizeinbase(self._mpz_p, 2) | |
def size_in_bytes(self): | |
"""Return the minimum number of bytes that can encode the number.""" | |
return (self.size_in_bits() - 1) // 8 + 1 | |
def is_perfect_square(self): | |
return _gmp.mpz_perfect_square_p(self._mpz_p) != 0 | |
def fail_if_divisible_by(self, small_prime): | |
"""Raise an exception if the small prime is a divisor.""" | |
if is_native_int(small_prime): | |
if 0 < small_prime < 65536: | |
if _gmp.mpz_divisible_ui_p(self._mpz_p, | |
c_ulong(small_prime)): | |
raise ValueError("The value is composite") | |
return | |
small_prime = IntegerGMP(small_prime) | |
if _gmp.mpz_divisible_p(self._mpz_p, | |
small_prime._mpz_p): | |
raise ValueError("The value is composite") | |
def multiply_accumulate(self, a, b): | |
"""Increment the number by the product of a and b.""" | |
if not isinstance(a, IntegerGMP): | |
a = IntegerGMP(a) | |
if is_native_int(b): | |
if 0 < b < 65536: | |
_gmp.mpz_addmul_ui(self._mpz_p, | |
a._mpz_p, | |
c_ulong(b)) | |
return self | |
if -65535 < b < 0: | |
_gmp.mpz_submul_ui(self._mpz_p, | |
a._mpz_p, | |
c_ulong(-b)) | |
return self | |
b = IntegerGMP(b) | |
_gmp.mpz_addmul(self._mpz_p, | |
a._mpz_p, | |
b._mpz_p) | |
return self | |
def set(self, source): | |
"""Set the Integer to have the given value""" | |
if not isinstance(source, IntegerGMP): | |
source = IntegerGMP(source) | |
_gmp.mpz_set(self._mpz_p, | |
source._mpz_p) | |
return self | |
def inplace_inverse(self, modulus): | |
"""Compute the inverse of this number in the ring of | |
modulo integers. | |
Raise an exception if no inverse exists. | |
""" | |
if not isinstance(modulus, IntegerGMP): | |
modulus = IntegerGMP(modulus) | |
comp = _gmp.mpz_cmp(modulus._mpz_p, | |
self._zero_mpz_p) | |
if comp == 0: | |
raise ZeroDivisionError("Modulus cannot be zero") | |
if comp < 0: | |
raise ValueError("Modulus must be positive") | |
result = _gmp.mpz_invert(self._mpz_p, | |
self._mpz_p, | |
modulus._mpz_p) | |
if not result: | |
raise ValueError("No inverse value can be computed") | |
return self | |
def inverse(self, modulus): | |
result = IntegerGMP(self) | |
result.inplace_inverse(modulus) | |
return result | |
def gcd(self, term): | |
"""Compute the greatest common denominator between this | |
number and another term.""" | |
result = IntegerGMP(0) | |
if is_native_int(term): | |
if 0 < term < 65535: | |
_gmp.mpz_gcd_ui(result._mpz_p, | |
self._mpz_p, | |
c_ulong(term)) | |
return result | |
term = IntegerGMP(term) | |
_gmp.mpz_gcd(result._mpz_p, self._mpz_p, term._mpz_p) | |
return result | |
def lcm(self, term): | |
"""Compute the least common multiplier between this | |
number and another term.""" | |
result = IntegerGMP(0) | |
if not isinstance(term, IntegerGMP): | |
term = IntegerGMP(term) | |
_gmp.mpz_lcm(result._mpz_p, self._mpz_p, term._mpz_p) | |
return result | |
def jacobi_symbol(a, n): | |
"""Compute the Jacobi symbol""" | |
if not isinstance(a, IntegerGMP): | |
a = IntegerGMP(a) | |
if not isinstance(n, IntegerGMP): | |
n = IntegerGMP(n) | |
if n <= 0 or n.is_even(): | |
raise ValueError("n must be positive odd for the Jacobi symbol") | |
return _gmp.mpz_jacobi(a._mpz_p, n._mpz_p) | |
# Clean-up | |
def __del__(self): | |
try: | |
if self._mpz_p is not None: | |
if self._initialized: | |
_gmp.mpz_clear(self._mpz_p) | |
self._mpz_p = None | |
except AttributeError: | |
pass | |