Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# =================================================================== | |
# | |
# Copyright (c) 2016, Legrandin <[email protected]> | |
# All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions | |
# are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# 2. Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in | |
# the documentation and/or other materials provided with the | |
# distribution. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | |
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | |
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
# POSSIBILITY OF SUCH DAMAGE. | |
# =================================================================== | |
__all__ = ['generate', 'construct', 'import_key', | |
'RsaKey', 'oid'] | |
import binascii | |
import struct | |
from Crypto import Random | |
from Crypto.Util.py3compat import tobytes, bord, tostr | |
from Crypto.Util.asn1 import DerSequence, DerNull | |
from Crypto.Math.Numbers import Integer | |
from Crypto.Math.Primality import (test_probable_prime, | |
generate_probable_prime, COMPOSITE) | |
from Crypto.PublicKey import (_expand_subject_public_key_info, | |
_create_subject_public_key_info, | |
_extract_subject_public_key_info) | |
class RsaKey(object): | |
r"""Class defining an actual RSA key. | |
Do not instantiate directly. | |
Use :func:`generate`, :func:`construct` or :func:`import_key` instead. | |
:ivar n: RSA modulus | |
:vartype n: integer | |
:ivar e: RSA public exponent | |
:vartype e: integer | |
:ivar d: RSA private exponent | |
:vartype d: integer | |
:ivar p: First factor of the RSA modulus | |
:vartype p: integer | |
:ivar q: Second factor of the RSA modulus | |
:vartype q: integer | |
:ivar u: Chinese remainder component (:math:`p^{-1} \text{mod } q`) | |
:vartype u: integer | |
:undocumented: exportKey, publickey | |
""" | |
def __init__(self, **kwargs): | |
"""Build an RSA key. | |
:Keywords: | |
n : integer | |
The modulus. | |
e : integer | |
The public exponent. | |
d : integer | |
The private exponent. Only required for private keys. | |
p : integer | |
The first factor of the modulus. Only required for private keys. | |
q : integer | |
The second factor of the modulus. Only required for private keys. | |
u : integer | |
The CRT coefficient (inverse of p modulo q). Only required for | |
private keys. | |
""" | |
input_set = set(kwargs.keys()) | |
public_set = set(('n', 'e')) | |
private_set = public_set | set(('p', 'q', 'd', 'u')) | |
if input_set not in (private_set, public_set): | |
raise ValueError("Some RSA components are missing") | |
for component, value in kwargs.items(): | |
setattr(self, "_" + component, value) | |
if input_set == private_set: | |
self._dp = self._d % (self._p - 1) # = (e⁻¹) mod (p-1) | |
self._dq = self._d % (self._q - 1) # = (e⁻¹) mod (q-1) | |
def n(self): | |
return int(self._n) | |
def e(self): | |
return int(self._e) | |
def d(self): | |
if not self.has_private(): | |
raise AttributeError("No private exponent available for public keys") | |
return int(self._d) | |
def p(self): | |
if not self.has_private(): | |
raise AttributeError("No CRT component 'p' available for public keys") | |
return int(self._p) | |
def q(self): | |
if not self.has_private(): | |
raise AttributeError("No CRT component 'q' available for public keys") | |
return int(self._q) | |
def u(self): | |
if not self.has_private(): | |
raise AttributeError("No CRT component 'u' available for public keys") | |
return int(self._u) | |
def size_in_bits(self): | |
"""Size of the RSA modulus in bits""" | |
return self._n.size_in_bits() | |
def size_in_bytes(self): | |
"""The minimal amount of bytes that can hold the RSA modulus""" | |
return (self._n.size_in_bits() - 1) // 8 + 1 | |
def _encrypt(self, plaintext): | |
if not 0 <= plaintext < self._n: | |
raise ValueError("Plaintext too large") | |
return int(pow(Integer(plaintext), self._e, self._n)) | |
def _decrypt(self, ciphertext): | |
if not 0 <= ciphertext < self._n: | |
raise ValueError("Ciphertext too large") | |
if not self.has_private(): | |
raise TypeError("This is not a private key") | |
# Blinded RSA decryption (to prevent timing attacks): | |
# Step 1: Generate random secret blinding factor r, | |
# such that 0 < r < n-1 | |
r = Integer.random_range(min_inclusive=1, max_exclusive=self._n) | |
# Step 2: Compute c' = c * r**e mod n | |
cp = Integer(ciphertext) * pow(r, self._e, self._n) % self._n | |
# Step 3: Compute m' = c'**d mod n (normal RSA decryption) | |
m1 = pow(cp, self._dp, self._p) | |
m2 = pow(cp, self._dq, self._q) | |
h = ((m2 - m1) * self._u) % self._q | |
mp = h * self._p + m1 | |
# Step 4: Compute m = m' * (r**(-1)) mod n | |
result = (r.inverse(self._n) * mp) % self._n | |
# Verify no faults occurred | |
if ciphertext != pow(result, self._e, self._n): | |
raise ValueError("Fault detected in RSA decryption") | |
return result | |
def has_private(self): | |
"""Whether this is an RSA private key""" | |
return hasattr(self, "_d") | |
def can_encrypt(self): # legacy | |
return True | |
def can_sign(self): # legacy | |
return True | |
def public_key(self): | |
"""A matching RSA public key. | |
Returns: | |
a new :class:`RsaKey` object | |
""" | |
return RsaKey(n=self._n, e=self._e) | |
def __eq__(self, other): | |
if self.has_private() != other.has_private(): | |
return False | |
if self.n != other.n or self.e != other.e: | |
return False | |
if not self.has_private(): | |
return True | |
return (self.d == other.d) | |
def __ne__(self, other): | |
return not (self == other) | |
def __getstate__(self): | |
# RSA key is not pickable | |
from pickle import PicklingError | |
raise PicklingError | |
def __repr__(self): | |
if self.has_private(): | |
extra = ", d=%d, p=%d, q=%d, u=%d" % (int(self._d), int(self._p), | |
int(self._q), int(self._u)) | |
else: | |
extra = "" | |
return "RsaKey(n=%d, e=%d%s)" % (int(self._n), int(self._e), extra) | |
def __str__(self): | |
if self.has_private(): | |
key_type = "Private" | |
else: | |
key_type = "Public" | |
return "%s RSA key at 0x%X" % (key_type, id(self)) | |
def export_key(self, format='PEM', passphrase=None, pkcs=1, | |
protection=None, randfunc=None): | |
"""Export this RSA key. | |
Args: | |
format (string): | |
The format to use for wrapping the key: | |
- *'PEM'*. (*Default*) Text encoding, done according to `RFC1421`_/`RFC1423`_. | |
- *'DER'*. Binary encoding. | |
- *'OpenSSH'*. Textual encoding, done according to OpenSSH specification. | |
Only suitable for public keys (not private keys). | |
passphrase (string): | |
(*For private keys only*) The pass phrase used for protecting the output. | |
pkcs (integer): | |
(*For private keys only*) The ASN.1 structure to use for | |
serializing the key. Note that even in case of PEM | |
encoding, there is an inner ASN.1 DER structure. | |
With ``pkcs=1`` (*default*), the private key is encoded in a | |
simple `PKCS#1`_ structure (``RSAPrivateKey``). | |
With ``pkcs=8``, the private key is encoded in a `PKCS#8`_ structure | |
(``PrivateKeyInfo``). | |
.. note:: | |
This parameter is ignored for a public key. | |
For DER and PEM, an ASN.1 DER ``SubjectPublicKeyInfo`` | |
structure is always used. | |
protection (string): | |
(*For private keys only*) | |
The encryption scheme to use for protecting the private key. | |
If ``None`` (default), the behavior depends on :attr:`format`: | |
- For *'DER'*, the *PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC* | |
scheme is used. The following operations are performed: | |
1. A 16 byte Triple DES key is derived from the passphrase | |
using :func:`Crypto.Protocol.KDF.PBKDF2` with 8 bytes salt, | |
and 1 000 iterations of :mod:`Crypto.Hash.HMAC`. | |
2. The private key is encrypted using CBC. | |
3. The encrypted key is encoded according to PKCS#8. | |
- For *'PEM'*, the obsolete PEM encryption scheme is used. | |
It is based on MD5 for key derivation, and Triple DES for encryption. | |
Specifying a value for :attr:`protection` is only meaningful for PKCS#8 | |
(that is, ``pkcs=8``) and only if a pass phrase is present too. | |
The supported schemes for PKCS#8 are listed in the | |
:mod:`Crypto.IO.PKCS8` module (see :attr:`wrap_algo` parameter). | |
randfunc (callable): | |
A function that provides random bytes. Only used for PEM encoding. | |
The default is :func:`Crypto.Random.get_random_bytes`. | |
Returns: | |
byte string: the encoded key | |
Raises: | |
ValueError:when the format is unknown or when you try to encrypt a private | |
key with *DER* format and PKCS#1. | |
.. warning:: | |
If you don't provide a pass phrase, the private key will be | |
exported in the clear! | |
.. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt | |
.. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt | |
.. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt | |
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt | |
""" | |
if passphrase is not None: | |
passphrase = tobytes(passphrase) | |
if randfunc is None: | |
randfunc = Random.get_random_bytes | |
if format == 'OpenSSH': | |
e_bytes, n_bytes = [x.to_bytes() for x in (self._e, self._n)] | |
if bord(e_bytes[0]) & 0x80: | |
e_bytes = b'\x00' + e_bytes | |
if bord(n_bytes[0]) & 0x80: | |
n_bytes = b'\x00' + n_bytes | |
keyparts = [b'ssh-rsa', e_bytes, n_bytes] | |
keystring = b''.join([struct.pack(">I", len(kp)) + kp for kp in keyparts]) | |
return b'ssh-rsa ' + binascii.b2a_base64(keystring)[:-1] | |
# DER format is always used, even in case of PEM, which simply | |
# encodes it into BASE64. | |
if self.has_private(): | |
binary_key = DerSequence([0, | |
self.n, | |
self.e, | |
self.d, | |
self.p, | |
self.q, | |
self.d % (self.p-1), | |
self.d % (self.q-1), | |
Integer(self.q).inverse(self.p) | |
]).encode() | |
if pkcs == 1: | |
key_type = 'RSA PRIVATE KEY' | |
if format == 'DER' and passphrase: | |
raise ValueError("PKCS#1 private key cannot be encrypted") | |
else: # PKCS#8 | |
from Crypto.IO import PKCS8 | |
if format == 'PEM' and protection is None: | |
key_type = 'PRIVATE KEY' | |
binary_key = PKCS8.wrap(binary_key, oid, None, | |
key_params=DerNull()) | |
else: | |
key_type = 'ENCRYPTED PRIVATE KEY' | |
if not protection: | |
protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC' | |
binary_key = PKCS8.wrap(binary_key, oid, | |
passphrase, protection, | |
key_params=DerNull()) | |
passphrase = None | |
else: | |
key_type = "PUBLIC KEY" | |
binary_key = _create_subject_public_key_info(oid, | |
DerSequence([self.n, | |
self.e]), | |
DerNull() | |
) | |
if format == 'DER': | |
return binary_key | |
if format == 'PEM': | |
from Crypto.IO import PEM | |
pem_str = PEM.encode(binary_key, key_type, passphrase, randfunc) | |
return tobytes(pem_str) | |
raise ValueError("Unknown key format '%s'. Cannot export the RSA key." % format) | |
# Backward compatibility | |
exportKey = export_key | |
publickey = public_key | |
# Methods defined in PyCrypto that we don't support anymore | |
def sign(self, M, K): | |
raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead") | |
def verify(self, M, signature): | |
raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead") | |
def encrypt(self, plaintext, K): | |
raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead") | |
def decrypt(self, ciphertext): | |
raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead") | |
def blind(self, M, B): | |
raise NotImplementedError | |
def unblind(self, M, B): | |
raise NotImplementedError | |
def size(self): | |
raise NotImplementedError | |
def generate(bits, randfunc=None, e=65537): | |
"""Create a new RSA key pair. | |
The algorithm closely follows NIST `FIPS 186-4`_ in its | |
sections B.3.1 and B.3.3. The modulus is the product of | |
two non-strong probable primes. | |
Each prime passes a suitable number of Miller-Rabin tests | |
with random bases and a single Lucas test. | |
Args: | |
bits (integer): | |
Key length, or size (in bits) of the RSA modulus. | |
It must be at least 1024, but **2048 is recommended.** | |
The FIPS standard only defines 1024, 2048 and 3072. | |
randfunc (callable): | |
Function that returns random bytes. | |
The default is :func:`Crypto.Random.get_random_bytes`. | |
e (integer): | |
Public RSA exponent. It must be an odd positive integer. | |
It is typically a small number with very few ones in its | |
binary representation. | |
The FIPS standard requires the public exponent to be | |
at least 65537 (the default). | |
Returns: an RSA key object (:class:`RsaKey`, with private key). | |
.. _FIPS 186-4: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf | |
""" | |
if bits < 1024: | |
raise ValueError("RSA modulus length must be >= 1024") | |
if e % 2 == 0 or e < 3: | |
raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.") | |
if randfunc is None: | |
randfunc = Random.get_random_bytes | |
d = n = Integer(1) | |
e = Integer(e) | |
while n.size_in_bits() != bits and d < (1 << (bits // 2)): | |
# Generate the prime factors of n: p and q. | |
# By construciton, their product is always | |
# 2^{bits-1} < p*q < 2^bits. | |
size_q = bits // 2 | |
size_p = bits - size_q | |
min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt() | |
if size_q != size_p: | |
min_p = (Integer(1) << (2 * size_p - 1)).sqrt() | |
def filter_p(candidate): | |
return candidate > min_p and (candidate - 1).gcd(e) == 1 | |
p = generate_probable_prime(exact_bits=size_p, | |
randfunc=randfunc, | |
prime_filter=filter_p) | |
min_distance = Integer(1) << (bits // 2 - 100) | |
def filter_q(candidate): | |
return (candidate > min_q and | |
(candidate - 1).gcd(e) == 1 and | |
abs(candidate - p) > min_distance) | |
q = generate_probable_prime(exact_bits=size_q, | |
randfunc=randfunc, | |
prime_filter=filter_q) | |
n = p * q | |
lcm = (p - 1).lcm(q - 1) | |
d = e.inverse(lcm) | |
if p > q: | |
p, q = q, p | |
u = p.inverse(q) | |
return RsaKey(n=n, e=e, d=d, p=p, q=q, u=u) | |
def construct(rsa_components, consistency_check=True): | |
r"""Construct an RSA key from a tuple of valid RSA components. | |
The modulus **n** must be the product of two primes. | |
The public exponent **e** must be odd and larger than 1. | |
In case of a private key, the following equations must apply: | |
.. math:: | |
\begin{align} | |
p*q &= n \\ | |
e*d &\equiv 1 ( \text{mod lcm} [(p-1)(q-1)]) \\ | |
p*u &\equiv 1 ( \text{mod } q) | |
\end{align} | |
Args: | |
rsa_components (tuple): | |
A tuple of integers, with at least 2 and no | |
more than 6 items. The items come in the following order: | |
1. RSA modulus *n*. | |
2. Public exponent *e*. | |
3. Private exponent *d*. | |
Only required if the key is private. | |
4. First factor of *n* (*p*). | |
Optional, but the other factor *q* must also be present. | |
5. Second factor of *n* (*q*). Optional. | |
6. CRT coefficient *q*, that is :math:`p^{-1} \text{mod }q`. Optional. | |
consistency_check (boolean): | |
If ``True``, the library will verify that the provided components | |
fulfil the main RSA properties. | |
Raises: | |
ValueError: when the key being imported fails the most basic RSA validity checks. | |
Returns: An RSA key object (:class:`RsaKey`). | |
""" | |
class InputComps(object): | |
pass | |
input_comps = InputComps() | |
for (comp, value) in zip(('n', 'e', 'd', 'p', 'q', 'u'), rsa_components): | |
setattr(input_comps, comp, Integer(value)) | |
n = input_comps.n | |
e = input_comps.e | |
if not hasattr(input_comps, 'd'): | |
key = RsaKey(n=n, e=e) | |
else: | |
d = input_comps.d | |
if hasattr(input_comps, 'q'): | |
p = input_comps.p | |
q = input_comps.q | |
else: | |
# Compute factors p and q from the private exponent d. | |
# We assume that n has no more than two factors. | |
# See 8.2.2(i) in Handbook of Applied Cryptography. | |
ktot = d * e - 1 | |
# The quantity d*e-1 is a multiple of phi(n), even, | |
# and can be represented as t*2^s. | |
t = ktot | |
while t % 2 == 0: | |
t //= 2 | |
# Cycle through all multiplicative inverses in Zn. | |
# The algorithm is non-deterministic, but there is a 50% chance | |
# any candidate a leads to successful factoring. | |
# See "Digitalized Signatures and Public Key Functions as Intractable | |
# as Factorization", M. Rabin, 1979 | |
spotted = False | |
a = Integer(2) | |
while not spotted and a < 100: | |
k = Integer(t) | |
# Cycle through all values a^{t*2^i}=a^k | |
while k < ktot: | |
cand = pow(a, k, n) | |
# Check if a^k is a non-trivial root of unity (mod n) | |
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1: | |
# We have found a number such that (cand-1)(cand+1)=0 (mod n). | |
# Either of the terms divides n. | |
p = Integer(n).gcd(cand + 1) | |
spotted = True | |
break | |
k *= 2 | |
# This value was not any good... let's try another! | |
a += 2 | |
if not spotted: | |
raise ValueError("Unable to compute factors p and q from exponent d.") | |
# Found ! | |
assert ((n % p) == 0) | |
q = n // p | |
if hasattr(input_comps, 'u'): | |
u = input_comps.u | |
else: | |
u = p.inverse(q) | |
# Build key object | |
key = RsaKey(n=n, e=e, d=d, p=p, q=q, u=u) | |
# Verify consistency of the key | |
if consistency_check: | |
# Modulus and public exponent must be coprime | |
if e <= 1 or e >= n: | |
raise ValueError("Invalid RSA public exponent") | |
if Integer(n).gcd(e) != 1: | |
raise ValueError("RSA public exponent is not coprime to modulus") | |
# For RSA, modulus must be odd | |
if not n & 1: | |
raise ValueError("RSA modulus is not odd") | |
if key.has_private(): | |
# Modulus and private exponent must be coprime | |
if d <= 1 or d >= n: | |
raise ValueError("Invalid RSA private exponent") | |
if Integer(n).gcd(d) != 1: | |
raise ValueError("RSA private exponent is not coprime to modulus") | |
# Modulus must be product of 2 primes | |
if p * q != n: | |
raise ValueError("RSA factors do not match modulus") | |
if test_probable_prime(p) == COMPOSITE: | |
raise ValueError("RSA factor p is composite") | |
if test_probable_prime(q) == COMPOSITE: | |
raise ValueError("RSA factor q is composite") | |
# See Carmichael theorem | |
phi = (p - 1) * (q - 1) | |
lcm = phi // (p - 1).gcd(q - 1) | |
if (e * d % int(lcm)) != 1: | |
raise ValueError("Invalid RSA condition") | |
if hasattr(key, 'u'): | |
# CRT coefficient | |
if u <= 1 or u >= q: | |
raise ValueError("Invalid RSA component u") | |
if (p * u % q) != 1: | |
raise ValueError("Invalid RSA component u with p") | |
return key | |
def _import_pkcs1_private(encoded, *kwargs): | |
# RSAPrivateKey ::= SEQUENCE { | |
# version Version, | |
# modulus INTEGER, -- n | |
# publicExponent INTEGER, -- e | |
# privateExponent INTEGER, -- d | |
# prime1 INTEGER, -- p | |
# prime2 INTEGER, -- q | |
# exponent1 INTEGER, -- d mod (p-1) | |
# exponent2 INTEGER, -- d mod (q-1) | |
# coefficient INTEGER -- (inverse of q) mod p | |
# } | |
# | |
# Version ::= INTEGER | |
der = DerSequence().decode(encoded, nr_elements=9, only_ints_expected=True) | |
if der[0] != 0: | |
raise ValueError("No PKCS#1 encoding of an RSA private key") | |
return construct(der[1:6] + [Integer(der[4]).inverse(der[5])]) | |
def _import_pkcs1_public(encoded, *kwargs): | |
# RSAPublicKey ::= SEQUENCE { | |
# modulus INTEGER, -- n | |
# publicExponent INTEGER -- e | |
# } | |
der = DerSequence().decode(encoded, nr_elements=2, only_ints_expected=True) | |
return construct(der) | |
def _import_subjectPublicKeyInfo(encoded, *kwargs): | |
algoid, encoded_key, params = _expand_subject_public_key_info(encoded) | |
if algoid != oid or params is not None: | |
raise ValueError("No RSA subjectPublicKeyInfo") | |
return _import_pkcs1_public(encoded_key) | |
def _import_x509_cert(encoded, *kwargs): | |
sp_info = _extract_subject_public_key_info(encoded) | |
return _import_subjectPublicKeyInfo(sp_info) | |
def _import_pkcs8(encoded, passphrase): | |
from Crypto.IO import PKCS8 | |
k = PKCS8.unwrap(encoded, passphrase) | |
if k[0] != oid: | |
raise ValueError("No PKCS#8 encoded RSA key") | |
return _import_keyDER(k[1], passphrase) | |
def _import_keyDER(extern_key, passphrase): | |
"""Import an RSA key (public or private half), encoded in DER form.""" | |
decodings = (_import_pkcs1_private, | |
_import_pkcs1_public, | |
_import_subjectPublicKeyInfo, | |
_import_x509_cert, | |
_import_pkcs8) | |
for decoding in decodings: | |
try: | |
return decoding(extern_key, passphrase) | |
except ValueError: | |
pass | |
raise ValueError("RSA key format is not supported") | |
def _import_openssh_private_rsa(data, password): | |
from ._openssh import (import_openssh_private_generic, | |
read_bytes, read_string, check_padding) | |
ssh_name, decrypted = import_openssh_private_generic(data, password) | |
if ssh_name != "ssh-rsa": | |
raise ValueError("This SSH key is not RSA") | |
n, decrypted = read_bytes(decrypted) | |
e, decrypted = read_bytes(decrypted) | |
d, decrypted = read_bytes(decrypted) | |
iqmp, decrypted = read_bytes(decrypted) | |
p, decrypted = read_bytes(decrypted) | |
q, decrypted = read_bytes(decrypted) | |
_, padded = read_string(decrypted) # Comment | |
check_padding(padded) | |
build = [Integer.from_bytes(x) for x in (n, e, d, q, p, iqmp)] | |
return construct(build) | |
def import_key(extern_key, passphrase=None): | |
"""Import an RSA key (public or private). | |
Args: | |
extern_key (string or byte string): | |
The RSA key to import. | |
The following formats are supported for an RSA **public key**: | |
- X.509 certificate (binary or PEM format) | |
- X.509 ``subjectPublicKeyInfo`` DER SEQUENCE (binary or PEM | |
encoding) | |
- `PKCS#1`_ ``RSAPublicKey`` DER SEQUENCE (binary or PEM encoding) | |
- An OpenSSH line (e.g. the content of ``~/.ssh/id_ecdsa``, ASCII) | |
The following formats are supported for an RSA **private key**: | |
- PKCS#1 ``RSAPrivateKey`` DER SEQUENCE (binary or PEM encoding) | |
- `PKCS#8`_ ``PrivateKeyInfo`` or ``EncryptedPrivateKeyInfo`` | |
DER SEQUENCE (binary or PEM encoding) | |
- OpenSSH (text format, introduced in `OpenSSH 6.5`_) | |
For details about the PEM encoding, see `RFC1421`_/`RFC1423`_. | |
passphrase (string or byte string): | |
For private keys only, the pass phrase that encrypts the key. | |
Returns: An RSA key object (:class:`RsaKey`). | |
Raises: | |
ValueError/IndexError/TypeError: | |
When the given key cannot be parsed (possibly because the pass | |
phrase is wrong). | |
.. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt | |
.. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt | |
.. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt | |
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt | |
.. _`OpenSSH 6.5`: https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf | |
""" | |
from Crypto.IO import PEM | |
extern_key = tobytes(extern_key) | |
if passphrase is not None: | |
passphrase = tobytes(passphrase) | |
if extern_key.startswith(b'-----BEGIN OPENSSH PRIVATE KEY'): | |
text_encoded = tostr(extern_key) | |
openssh_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase) | |
result = _import_openssh_private_rsa(openssh_encoded, passphrase) | |
return result | |
if extern_key.startswith(b'-----'): | |
# This is probably a PEM encoded key. | |
(der, marker, enc_flag) = PEM.decode(tostr(extern_key), passphrase) | |
if enc_flag: | |
passphrase = None | |
return _import_keyDER(der, passphrase) | |
if extern_key.startswith(b'ssh-rsa '): | |
# This is probably an OpenSSH key | |
keystring = binascii.a2b_base64(extern_key.split(b' ')[1]) | |
keyparts = [] | |
while len(keystring) > 4: | |
length = struct.unpack(">I", keystring[:4])[0] | |
keyparts.append(keystring[4:4 + length]) | |
keystring = keystring[4 + length:] | |
e = Integer.from_bytes(keyparts[1]) | |
n = Integer.from_bytes(keyparts[2]) | |
return construct([n, e]) | |
if len(extern_key) > 0 and bord(extern_key[0]) == 0x30: | |
# This is probably a DER encoded key | |
return _import_keyDER(extern_key, passphrase) | |
raise ValueError("RSA key format is not supported") | |
# Backward compatibility | |
importKey = import_key | |
#: `Object ID`_ for the RSA encryption algorithm. This OID often indicates | |
#: a generic RSA key, even when such key will be actually used for digital | |
#: signatures. | |
#: | |
#: .. _`Object ID`: http://www.alvestrand.no/objectid/1.2.840.113549.1.1.1.html | |
oid = "1.2.840.113549.1.1.1" | |