File size: 14,101 Bytes
f80dc67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import gradio as gr
from gradio import ChatInterface, Request
from gradio.helpers import special_args
import anyio
import os
import threading
import sys
from itertools import chain
import autogen
from autogen.code_utils import extract_code
from autogen import UserProxyAgent, AssistantAgent, Agent, OpenAIWrapper


LOG_LEVEL = "INFO"
TIMEOUT = 60


class myChatInterface(ChatInterface):
    async def _submit_fn(
        self,
        message: str,
        history_with_input: list[list[str | None]],
        request: Request,
        *args,
    ) -> tuple[list[list[str | None]], list[list[str | None]]]:
        history = history_with_input[:-1]
        inputs, _, _ = special_args(
            self.fn, inputs=[message, history, *args], request=request
        )

        if self.is_async:
            response = await self.fn(*inputs)
        else:
            response = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )

        # history.append([message, response])
        return history, history


with gr.Blocks() as demo:

    def flatten_chain(list_of_lists):
        return list(chain.from_iterable(list_of_lists))

    class thread_with_trace(threading.Thread):
        # https://www.geeksforgeeks.org/python-different-ways-to-kill-a-thread/
        # https://stackoverflow.com/questions/6893968/how-to-get-the-return-value-from-a-thread
        def __init__(self, *args, **keywords):
            threading.Thread.__init__(self, *args, **keywords)
            self.killed = False
            self._return = None

        def start(self):
            self.__run_backup = self.run
            self.run = self.__run
            threading.Thread.start(self)

        def __run(self):
            sys.settrace(self.globaltrace)
            self.__run_backup()
            self.run = self.__run_backup

        def run(self):
            if self._target is not None:
                self._return = self._target(*self._args, **self._kwargs)

        def globaltrace(self, frame, event, arg):
            if event == "call":
                return self.localtrace
            else:
                return None

        def localtrace(self, frame, event, arg):
            if self.killed:
                if event == "line":
                    raise SystemExit()
            return self.localtrace

        def kill(self):
            self.killed = True

        def join(self, timeout=0):
            threading.Thread.join(self, timeout)
            return self._return

    def update_agent_history(recipient, messages, sender, config):
        if config is None:
            config = recipient
        if messages is None:
            messages = recipient._oai_messages[sender]
        message = messages[-1]
        msg = message.get("content", "")
        # config.append(msg) if msg is not None else None  # config can be agent_history
        return False, None  # required to ensure the agent communication flow continues

    def _is_termination_msg(message):
        """Check if a message is a termination message.
        Terminate when no code block is detected. Currently only detect python code blocks.
        """
        if isinstance(message, dict):
            message = message.get("content")
            if message is None:
                return False
        cb = extract_code(message)
        contain_code = False
        for c in cb:
            # todo: support more languages
            if c[0] == "python":
                contain_code = True
                break
        return not contain_code

    def initialize_agents(config_list):
        assistant = AssistantAgent(
            name="assistant",
            max_consecutive_auto_reply=5,
            llm_config={
                # "seed": 42,
                "timeout": TIMEOUT,
                "config_list": config_list,
            },
        )

        userproxy = UserProxyAgent(
            name="userproxy",
            human_input_mode="NEVER",
            is_termination_msg=_is_termination_msg,
            max_consecutive_auto_reply=5,
            # code_execution_config=False,
            code_execution_config={
                "work_dir": "coding",
                "use_docker": False,  # set to True or image name like "python:3" to use docker
            },
        )

        # assistant.register_reply([Agent, None], update_agent_history)
        # userproxy.register_reply([Agent, None], update_agent_history)

        return assistant, userproxy

    def chat_to_oai_message(chat_history):
        """Convert chat history to OpenAI message format."""
        messages = []
        if LOG_LEVEL == "DEBUG":
            print(f"chat_to_oai_message: {chat_history}")
        for msg in chat_history:
            messages.append(
                {
                    "content": msg[0].split()[0]
                    if msg[0].startswith("exitcode")
                    else msg[0],
                    "role": "user",
                }
            )
            messages.append({"content": msg[1], "role": "assistant"})
        return messages

    def oai_message_to_chat(oai_messages, sender):
        """Convert OpenAI message format to chat history."""
        chat_history = []
        messages = oai_messages[sender]
        if LOG_LEVEL == "DEBUG":
            print(f"oai_message_to_chat: {messages}")
        for i in range(0, len(messages), 2):
            chat_history.append(
                [
                    messages[i]["content"],
                    messages[i + 1]["content"] if i + 1 < len(messages) else "",
                ]
            )
        return chat_history

    def agent_history_to_chat(agent_history):
        """Convert agent history to chat history."""
        chat_history = []
        for i in range(0, len(agent_history), 2):
            chat_history.append(
                [
                    agent_history[i],
                    agent_history[i + 1] if i + 1 < len(agent_history) else None,
                ]
            )
        return chat_history

    def initiate_chat(config_list, user_message, chat_history):
        if LOG_LEVEL == "DEBUG":
            print(f"chat_history_init: {chat_history}")
        # agent_history = flatten_chain(chat_history)
        if len(config_list[0].get("api_key", "")) < 2:
            chat_history.append(
                [
                    user_message,
                    "Hi, nice to meet you! Please enter your API keys in below text boxs.",
                ]
            )
            return chat_history
        else:
            llm_config = {
                # "seed": 42,
                "timeout": TIMEOUT,
                "config_list": config_list,
            }
            assistant.llm_config.update(llm_config)
            assistant.client = OpenAIWrapper(**assistant.llm_config)

        if user_message.strip().lower().startswith("show file:"):
            filename = user_message.strip().lower().replace("show file:", "").strip()
            filepath = os.path.join("coding", filename)
            if os.path.exists(filepath):
                chat_history.append([user_message, (filepath,)])
            else:
                chat_history.append([user_message, f"File {filename} not found."])
            return chat_history

        assistant.reset()
        oai_messages = chat_to_oai_message(chat_history)
        assistant._oai_system_message_origin = assistant._oai_system_message.copy()
        assistant._oai_system_message += oai_messages

        try:
            userproxy.initiate_chat(assistant, message=user_message)
            messages = userproxy.chat_messages
            chat_history += oai_message_to_chat(messages, assistant)
            # agent_history = flatten_chain(chat_history)
        except Exception as e:
            # agent_history += [user_message, str(e)]
            # chat_history[:] = agent_history_to_chat(agent_history)
            chat_history.append([user_message, str(e)])

        assistant._oai_system_message = assistant._oai_system_message_origin.copy()
        if LOG_LEVEL == "DEBUG":
            print(f"chat_history: {chat_history}")
            # print(f"agent_history: {agent_history}")
        return chat_history

    def chatbot_reply_thread(input_text, chat_history, config_list):
        """Chat with the agent through terminal."""
        thread = thread_with_trace(
            target=initiate_chat, args=(config_list, input_text, chat_history)
        )
        thread.start()
        try:
            messages = thread.join(timeout=TIMEOUT)
            if thread.is_alive():
                thread.kill()
                thread.join()
                messages = [
                    input_text,
                    "Timeout Error: Please check your API keys and try again later.",
                ]
        except Exception as e:
            messages = [
                [
                    input_text,
                    str(e)
                    if len(str(e)) > 0
                    else "Invalid Request to OpenAI, please check your API keys.",
                ]
            ]
        return messages

    def chatbot_reply_plain(input_text, chat_history, config_list):
        """Chat with the agent through terminal."""
        try:
            messages = initiate_chat(config_list, input_text, chat_history)
        except Exception as e:
            messages = [
                [
                    input_text,
                    str(e)
                    if len(str(e)) > 0
                    else "Invalid Request to OpenAI, please check your API keys.",
                ]
            ]
        return messages

    def chatbot_reply(input_text, chat_history, config_list):
        """Chat with the agent through terminal."""
        return chatbot_reply_thread(input_text, chat_history, config_list)

    def get_description_text():
        return """
        # Microsoft AutoGen: Multi-Round Human Interaction Chatbot Demo
        
        This demo shows how to build a chatbot which can handle multi-round conversations with human interactions.

        #### [AutoGen](https://github.com/microsoft/autogen) [Discord](https://discord.gg/pAbnFJrkgZ) [Paper](https://arxiv.org/abs/2308.08155) [SourceCode](https://github.com/thinkall/autogen-demos)
        """

    def update_config():
        config_list = autogen.config_list_from_models(
            model_list=[os.environ.get("MODEL", "gpt-35-turbo")],
        )
        if not config_list:
            config_list = [
                {
                    "api_key": "",
                    "base_url": "",
                    "api_type": "azure",
                    "api_version": "2023-07-01-preview",
                    "model": "gpt-35-turbo",
                }
            ]

        return config_list

    def set_params(model, oai_key, aoai_key, aoai_base):
        os.environ["MODEL"] = model
        os.environ["OPENAI_API_KEY"] = oai_key
        os.environ["AZURE_OPENAI_API_KEY"] = aoai_key
        os.environ["AZURE_OPENAI_API_BASE"] = aoai_base

    def respond(message, chat_history, model, oai_key, aoai_key, aoai_base):
        set_params(model, oai_key, aoai_key, aoai_base)
        config_list = update_config()
        chat_history[:] = chatbot_reply(message, chat_history, config_list)
        if LOG_LEVEL == "DEBUG":
            print(f"return chat_history: {chat_history}")
        return ""

    config_list, assistant, userproxy = (
        [
            {
                "api_key": "",
                "base_url": "",
                "api_type": "azure",
                "api_version": "2023-07-01-preview",
                "model": "gpt-35-turbo",
            }
        ],
        None,
        None,
    )
    assistant, userproxy = initialize_agents(config_list)

    description = gr.Markdown(get_description_text())

    with gr.Row() as params:
        txt_model = gr.Dropdown(
            label="Model",
            choices=[
                "gpt-4",
                "gpt-35-turbo",
                "gpt-3.5-turbo",
            ],
            allow_custom_value=True,
            value="gpt-35-turbo",
            container=True,
        )
        txt_oai_key = gr.Textbox(
            label="OpenAI API Key",
            placeholder="Enter OpenAI API Key",
            max_lines=1,
            show_label=True,
            container=True,
            type="password",
        )
        txt_aoai_key = gr.Textbox(
            label="Azure OpenAI API Key",
            placeholder="Enter Azure OpenAI API Key",
            max_lines=1,
            show_label=True,
            container=True,
            type="password",
        )
        txt_aoai_base_url = gr.Textbox(
            label="Azure OpenAI API Base",
            placeholder="Enter Azure OpenAI Base Url",
            max_lines=1,
            show_label=True,
            container=True,
            type="password",
        )

    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        bubble_full_width=False,
        avatar_images=(
            "human.png",
            (os.path.join(os.path.dirname(__file__), "autogen.png")),
        ),
        render=False,
        height=800,
    )

    txt_input = gr.Textbox(
        scale=4,
        show_label=False,
        placeholder="Enter text and press enter",
        container=False,
        render=False,
        autofocus=True,
    )

    chatiface = myChatInterface(
        respond,
        chatbot=chatbot,
        textbox=txt_input,
        additional_inputs=[
            txt_model,
            txt_oai_key,
            txt_aoai_key,
            txt_aoai_base_url,
        ],
        examples=[
            ["write a python function to count the sum of two numbers?"],
            ["what if the production of two numbers?"],
            [
                "Plot a chart of the last year's stock prices of Microsoft, Google and Apple and save to stock_price.png."
            ],
            ["show file: stock_price.png"],
        ],
    )


if __name__ == "__main__":
    demo.launch(share=True, server_name="0.0.0.0")