Spaces:
Sleeping
Sleeping
save
Browse files- requirements.txt +2 -1
- src/streamlit_app.py +25 -1
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
altair
|
2 |
pandas
|
3 |
-
streamlit
|
|
|
|
1 |
altair
|
2 |
pandas
|
3 |
+
streamlit
|
4 |
+
sklearn
|
src/streamlit_app.py
CHANGED
@@ -1,5 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
|
|
|
|
|
|
3 |
|
4 |
penguin_df = pd.read_csv('src/penguins.csv')
|
5 |
st.write(penguin_df.head())
|
@@ -16,4 +20,24 @@ features = pd.get_dummies(features)
|
|
16 |
st.write('Here are our output variables')
|
17 |
st.write(output.head())
|
18 |
st.write('Here are our feature variables')
|
19 |
-
st.write(features.head())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
|
5 |
+
from sklearn.metrics import accuracy_score
|
6 |
+
from sklearn.ensemble import RandomForestClassifier
|
7 |
|
8 |
penguin_df = pd.read_csv('src/penguins.csv')
|
9 |
st.write(penguin_df.head())
|
|
|
20 |
st.write('Here are our output variables')
|
21 |
st.write(output.head())
|
22 |
st.write('Here are our feature variables')
|
23 |
+
st.write(features.head())
|
24 |
+
|
25 |
+
st.subheader('Model Training')
|
26 |
+
|
27 |
+
output = penguin_df['species']
|
28 |
+
features = penguin_df[['island', 'bill_length_mm', 'bill_depth_mm',
|
29 |
+
'flipper_length_mm', 'body_mass_g', 'sex']]
|
30 |
+
|
31 |
+
features = pd.get_dummies(features)
|
32 |
+
output, uniques = pd.factorize(output)
|
33 |
+
|
34 |
+
x_train, x_test, y_train, y_test = train_test_split(
|
35 |
+
|
36 |
+
features, output, test_size=.8)
|
37 |
+
|
38 |
+
rfc = RandomForestClassifier(random_state=15)
|
39 |
+
rfc.fit(x_train.values, y_train)
|
40 |
+
|
41 |
+
y_pred = rfc.predict(x_test.values)
|
42 |
+
score = accuracy_score(y_pred, y_test)
|
43 |
+
st.write('Our accuracy score for this model is {}'.format(score))
|