louiecerv commited on
Commit
b81ca23
·
1 Parent(s): 3d422c9
Files changed (2) hide show
  1. Dockerfile +3 -0
  2. src/streamlit_app.py +16 -8
Dockerfile CHANGED
@@ -14,6 +14,9 @@ COPY src/ ./src/
14
 
15
  RUN pip3 install -r requirements.txt
16
 
 
 
 
17
  EXPOSE 8501
18
 
19
  HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
 
14
 
15
  RUN pip3 install -r requirements.txt
16
 
17
+ # Create the outputs directory and set permissions
18
+ RUN mkdir -p outputs && chmod 777 outputs
19
+
20
  EXPOSE 8501
21
 
22
  HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
src/streamlit_app.py CHANGED
@@ -2,6 +2,8 @@ import streamlit as st
2
  import pandas as pd
3
  from sklearn.model_selection import train_test_split
4
  import pickle
 
 
5
 
6
  from sklearn.metrics import accuracy_score
7
  from sklearn.ensemble import RandomForestClassifier
@@ -43,12 +45,18 @@ y_pred = rfc.predict(x_test.values)
43
  score = accuracy_score(y_pred, y_test)
44
  st.write('Our accuracy score for this model is {}'.format(score))
45
 
46
- st.subheader('Model Output to Pickle')
 
 
 
 
 
 
 
 
 
47
 
48
- outputfilename = 'random_forest_penguin.pickle'
49
- rf_pickle = open( outputfilename, 'wb')
50
- pickle.dump(rfc, rf_pickle)
51
- rf_pickle.close()
52
- output_pickle = open(outputfilename, 'wb')
53
- pickle.dump(uniques, output_pickle)
54
- output_pickle.close()
 
2
  import pandas as pd
3
  from sklearn.model_selection import train_test_split
4
  import pickle
5
+ import os
6
+ import pickle
7
 
8
  from sklearn.metrics import accuracy_score
9
  from sklearn.ensemble import RandomForestClassifier
 
45
  score = accuracy_score(y_pred, y_test)
46
  st.write('Our accuracy score for this model is {}'.format(score))
47
 
48
+ st.subheader('Save the Model Output to Pickle')
49
+
50
+ # Create output directory if it doesn't exist
51
+ output_dir = "outputs"
52
+ os.makedirs(output_dir, exist_ok=True)
53
+
54
+ # Save the model
55
+ model_filename = os.path.join(output_dir, "random_forest_penguin.pickle")
56
+ with open(model_filename, "wb") as rf_pickle:
57
+ pickle.dump(rfc, rf_pickle)
58
 
59
+ # Save the uniques or other data
60
+ uniques_filename = os.path.join(output_dir, "uniques_data.pickle")
61
+ with open(uniques_filename, "wb") as output_pickle:
62
+ pickle.dump(uniques, output_pickle)