louiecerv commited on
Commit
6b44a5c
·
1 Parent(s): e40bb4f

sync to remote

Browse files
Files changed (2) hide show
  1. app.py +322 -0
  2. requirements.txt +7 -0
app.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from sklearn.model_selection import train_test_split
4
+ from sklearn.preprocessing import OneHotEncoder, StandardScaler
5
+ from sklearn.impute import SimpleImputer
6
+ from sklearn.linear_model import LogisticRegression
7
+ from sklearn.naive_bayes import GaussianNB
8
+ from sklearn.svm import SVC
9
+ from sklearn.tree import DecisionTreeClassifier
10
+ from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
11
+ from sklearn.neural_network import MLPClassifier
12
+ from sklearn.metrics import confusion_matrix, classification_report
13
+ import matplotlib.pyplot as plt
14
+ import seaborn as sns
15
+ from huggingface_hub import login
16
+ from datasets import load_dataset
17
+ import io
18
+ from contextlib import redirect_stdout
19
+ import os
20
+
21
+ # Streamlit UI
22
+ dataset_name = "louiecerv/diabetes_dataset"
23
+
24
+ # Retrieve Hugging Face token from environment variable
25
+ hf_token = os.getenv("HF_TOKEN")
26
+
27
+ if not hf_token:
28
+ st.error("HF_TOKEN environment variable is not set. Please set it before running the app.")
29
+ st.stop()
30
+
31
+ # Login to Hugging Face Hub
32
+ login(token=hf_token)
33
+
34
+ # Load dataset
35
+ try:
36
+ with st.spinner("Loading dataset..."):
37
+ dataset = load_dataset(dataset_name)
38
+ st.success("Dataset loaded successfully.")
39
+ except ValueError:
40
+ st.error("Dataset not found or incorrect dataset name. Please check the dataset identifier.")
41
+ st.stop()
42
+ except PermissionError:
43
+ st.error("Authentication failed. Check if your Hugging Face token is correct.")
44
+ st.stop()
45
+ except Exception as e:
46
+ st.error(f"Unexpected error: {e}")
47
+ st.stop()
48
+
49
+ data = dataset["train"].to_pandas()
50
+
51
+ # Set the title of the Streamlit app
52
+ st.title("Diabetes Prediction App")
53
+
54
+ with st.expander("About This App"):
55
+ st.markdown("""
56
+ ## Dataset Description
57
+
58
+ This app uses a dataset containing medical and lifestyle information about patients,
59
+ along with their diabetes status (positive or negative). The goal is to predict
60
+ whether a patient has diabetes based on their provided features.
61
+
62
+ The dataset includes the following features:
63
+
64
+ | Column | Description | Type |
65
+ |-----------------|-------------------------------------------|---------|
66
+ | gender | The gender of the patient | Object |
67
+ | age | The age of the patient | Float |
68
+ | hypertension | Whether the patient has hypertension (1 for yes, 0 for no) | Integer |
69
+ | heart_disease | Whether the patient has heart disease (1 for yes, 0 for no) | Integer |
70
+ | smoking_history | The smoking history of the patient | Object |
71
+ | bmi | The body mass index of the patient | Float |
72
+ | HbA1c_level | The HbA1c level of the patient | Float |
73
+ | blood_glucose_level | The blood glucose level of the patient | Integer |
74
+ | diabetes | Whether the patient has diabetes (1 for yes, 0 for no) | Integer |
75
+
76
+ ## Preprocessing Tasks
77
+
78
+ The following preprocessing steps were performed on the data:
79
+
80
+ * **Handle Missing Values:** Missing values were checked and imputed using appropriate methods.
81
+ * **Encode Categorical Features:** Categorical features (gender, smoking_history) were converted
82
+ into numerical representations using one-hot encoding.
83
+ * **Scale Numerical Features:** Numerical features (age, bmi, HbA1c_level, blood_glucose_level)
84
+ were scaled to a standard range.
85
+ * **Split Data:** The dataset was divided into training and testing sets.
86
+ * **Handle Class Imbalance (if present):** Techniques like oversampling or undersampling were used if needed.
87
+
88
+ ## ML Model Recommendation
89
+
90
+ This app utilizes a machine learning model for binary classification. Suitable models for this type of prediction include:
91
+
92
+ * Logistic Regression
93
+ * Support Vector Machines (SVM)
94
+ * Decision Trees
95
+ * Random Forest
96
+ * Gradient Boosting Machines (GBM)
97
+
98
+ Created by Louie F. Cervantes, M.Eng. (Information Engineering)
99
+ """)
100
+
101
+ # Display the dataset in a dataframe
102
+ st.subheader("Dataset")
103
+ st.write(data)
104
+
105
+ # Show the statistics of the dataset
106
+ st.subheader("Dataset Statistics")
107
+ st.write(data.describe())
108
+
109
+ # Visualizations of the data
110
+ st.subheader("Data Visualizations")
111
+
112
+ # Histogram of age
113
+ st.write("Histogram of Age")
114
+ fig, ax = plt.subplots()
115
+ ax.hist(data['age'], bins=10)
116
+ ax.set_xlabel('Age')
117
+ ax.set_ylabel('Frequency')
118
+ st.pyplot(fig)
119
+
120
+ # Bar chart of gender
121
+ st.write("Bar Chart of Gender")
122
+ fig, ax = plt.subplots()
123
+ ax.bar(data['gender'].value_counts().index, data['gender'].value_counts().values)
124
+ ax.set_xlabel('Gender')
125
+ ax.set_ylabel('Count')
126
+ st.pyplot(fig)
127
+
128
+ # Preprocessing
129
+ st.subheader("Data Preprocessing")
130
+
131
+ # Check for null values
132
+ st.write("Null Values:")
133
+ st.write(data.isnull().sum())
134
+
135
+ # Handle null values
136
+ imputer = SimpleImputer(strategy='mean')
137
+ data['bmi'] = imputer.fit_transform(data[['bmi']])
138
+
139
+ # Check for consistency of data types
140
+ st.write("Data Types:")
141
+
142
+ # Create a buffer to capture the output of df.info()
143
+ buffer = io.StringIO()
144
+
145
+ # Redirect the output of df.info() to the buffer
146
+ with redirect_stdout(buffer):
147
+ data.info()
148
+
149
+ # Get the captured output from the buffer
150
+ info_string = buffer.getvalue()
151
+
152
+ # Split the output string into lines
153
+ lines = info_string.splitlines()
154
+
155
+ # Extract column names and their data types
156
+ columns = []
157
+ cname = []
158
+ counts = []
159
+ nulls = []
160
+ dtypes = []
161
+ for line in lines[5:-2]: # Skip header and footer lines
162
+ col_info = line.split()
163
+ columns.append(col_info[0])
164
+ cname.append(col_info[1])
165
+ counts.append(col_info[2])
166
+ nulls.append(col_info[3])
167
+ dtypes.append(col_info[4])
168
+
169
+ # Create a DataFrame
170
+ info_df = pd.DataFrame({'Column': columns,
171
+ 'Name': cname,
172
+ 'Count': counts,
173
+ 'Null': nulls,
174
+ 'Data Type': dtypes})
175
+
176
+ # Display the DataFrame in Streamlit
177
+ st.dataframe(info_df)
178
+
179
+ # Identify numeric and categorical data
180
+ numeric_features = data.select_dtypes(include=['int64', 'float64']).columns
181
+ categorical_features = data.select_dtypes(include=['object']).columns
182
+ st.write("Numeric Features:", numeric_features)
183
+ st.write("Categorical Features:", categorical_features)
184
+
185
+ # One-hot encoding for categorical data
186
+ encoder = OneHotEncoder(handle_unknown='ignore')
187
+ encoded_data = encoder.fit_transform(data[categorical_features])
188
+ encoded_df = pd.DataFrame(encoded_data.toarray())
189
+ data = data.drop(categorical_features, axis=1)
190
+ data = pd.concat([data, encoded_df], axis=1)
191
+
192
+ # Split data into training and testing sets
193
+ X = data.drop('diabetes', axis=1)
194
+ y = data['diabetes']
195
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
196
+
197
+ # Redefine numeric_features after one-hot encoding and after dropping the target column
198
+ numeric_features = X.select_dtypes(include=['int64', 'float64']).columns
199
+
200
+ # Convert all column names to strings
201
+ X_train.columns = X_train.columns.astype(str)
202
+ X_test.columns = X_test.columns.astype(str)
203
+
204
+ # Scale numeric features
205
+ scaler = StandardScaler()
206
+
207
+ # Save column names before scaling
208
+ X_train_df = X_train # Save as DataFrame before scaling
209
+ X_test_df = X_test # Save as DataFrame before scaling
210
+ feature_names = X_train_df.columns # Store feature names separately
211
+
212
+ # Apply StandardScaler (returns a NumPy array)
213
+ scaler = StandardScaler()
214
+ X_train = scaler.fit_transform(X_train)
215
+ X_test = scaler.transform(X_test)
216
+
217
+ # Convert back to DataFrame after scaling
218
+ X_train = pd.DataFrame(X_train, columns=feature_names)
219
+ X_test = pd.DataFrame(X_test, columns=feature_names)
220
+
221
+ # Initialize session state for model training flag
222
+ if 'models_trained' not in st.session_state:
223
+ st.session_state['models_trained'] = False
224
+
225
+ # ML Models
226
+ st.subheader("Machine Learning Models")
227
+
228
+ # Initialize session state for models
229
+ if 'models' not in st.session_state:
230
+ st.session_state['models'] = {
231
+ "Logistic Regression": LogisticRegression(),
232
+ "Naive Bayes": GaussianNB(),
233
+ "SVM": SVC(),
234
+ "Decision Tree": DecisionTreeClassifier(),
235
+ "Random Forest": RandomForestClassifier(),
236
+ "Gradient Boosting": GradientBoostingClassifier(),
237
+ "MLP Neural Network": MLPClassifier()
238
+ }
239
+
240
+ # Create tabs for different models
241
+ model_tabs = st.tabs(st.session_state['models'].keys())
242
+
243
+ # Train the models and store them in session state
244
+ if not st.session_state['models_trained']:
245
+ with st.spinner("Training Models..."):
246
+ for i, (model_name, model) in enumerate(st.session_state['models'].items()):
247
+ with model_tabs[i]:
248
+ st.write(model_name)
249
+ model.fit(X_train, y_train)
250
+ y_pred = model.predict(X_test)
251
+ st.write("Confusion Matrix:")
252
+ st.write(confusion_matrix(y_test, y_pred))
253
+ cr = classification_report(y_test, y_pred, output_dict=True)
254
+ # Display classification report as dataframe
255
+ cr_df = pd.DataFrame(cr).transpose()
256
+ st.write(f"Classification Report - {model_name}")
257
+ st.write(cr_df)
258
+ st.session_state['models_trained'] = True
259
+
260
+ # Diabetes Prediction
261
+ st.subheader("Diabetes Prediction")
262
+
263
+ # Select the trained model to use
264
+ selected_model_name = st.selectbox("Select Trained Model", list(st.session_state['models'].keys()))
265
+ selected_model = st.session_state['models'][selected_model_name]
266
+
267
+ # Input Fields
268
+ gender = st.selectbox("Gender", ["Female", "Male", "Other"])
269
+ age = st.number_input("Age", min_value=0, max_value=120, value=30)
270
+ hypertension = st.selectbox("Hypertension", ['0', '1'])
271
+ heart_disease = st.selectbox("Heart Disease", ['0', '1'])
272
+ smoking_history = st.selectbox("Smoking History", ['never', 'No Info', 'current', 'former', 'ever', 'not current'])
273
+ bmi = st.number_input("BMI", min_value=0.0, value=25.0)
274
+ hba1c_level = st.number_input("HbA1c Level", min_value=0.0, value=6.0)
275
+ blood_glucose_level = st.number_input("Blood Glucose Level", min_value=0, value=100)
276
+
277
+ if st.button("Predict Diabetes"):
278
+ # Create a DataFrame for the user input
279
+ input_data = pd.DataFrame({
280
+ 'gender': [gender],
281
+ 'age': [age],
282
+ 'hypertension': [int(hypertension)], # Convert categorical numerical features to int
283
+ 'heart_disease': [int(heart_disease)],
284
+ 'smoking_history': [smoking_history],
285
+ 'bmi': [bmi],
286
+ 'HbA1c_level': [hba1c_level],
287
+ 'blood_glucose_level': [blood_glucose_level]
288
+ })
289
+
290
+ # Ensure encoding is applied correctly
291
+ encoded_input = encoder.transform(input_data[['gender', 'smoking_history']])
292
+ encoded_input_df = pd.DataFrame(encoded_input.toarray(), columns=encoder.get_feature_names_out())
293
+
294
+ # Drop the original categorical columns and concatenate the encoded features
295
+ input_data = input_data.drop(['gender', 'smoking_history'], axis=1)
296
+ input_data = pd.concat([input_data, encoded_input_df], axis=1)
297
+
298
+ # Ensure that the input data has the same columns as training data
299
+ missing_cols = set(X_train.columns) - set(input_data.columns) # ✅ Corrected line
300
+ for col in missing_cols:
301
+ input_data[col] = 0 # Add missing columns with zero values
302
+
303
+ # Reorder columns to match training data
304
+ input_data = input_data.reindex(columns=X_train.columns, fill_value=0)
305
+
306
+ # Convert all column names to strings
307
+ input_data.columns = input_data.columns.astype(str)
308
+
309
+ # Scale the user input (convert back to DataFrame after transformation)
310
+ input_data_scaled = scaler.transform(input_data)
311
+ input_data_scaled = pd.DataFrame(input_data_scaled, columns=input_data.columns) # Convert back to DataFrame
312
+
313
+ # Make prediction using the selected model
314
+ prediction = selected_model.predict(input_data_scaled)
315
+
316
+ # Display the prediction
317
+ st.write("Prediction:")
318
+ if prediction[0] == 0:
319
+ st.info("The model predicts that you do not have diabetes.")
320
+ else:
321
+ st.warning("The model predicts that you have diabetes.")
322
+
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ scikit-learn
4
+ matplotlib
5
+ seaborn
6
+ datasets
7
+ huggingface_hub