Spaces:
Running
Running
sync with remote
Browse files- app.py +143 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import os
|
| 4 |
+
import requests
|
| 5 |
+
import tempfile
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from tensorflow.keras.models import Sequential
|
| 8 |
+
from tensorflow.keras.layers import Flatten, Dense, Reshape
|
| 9 |
+
from tensorflow.keras.losses import SparseCategoricalCrossentropy
|
| 10 |
+
from io import StringIO
|
| 11 |
+
|
| 12 |
+
# Constants for dataset information
|
| 13 |
+
TRAIN_FILE = "train_images.tfrecords"
|
| 14 |
+
VAL_FILE = "val_images.tfrecords"
|
| 15 |
+
TRAIN_URL = "https://huggingface.co/datasets/louiecerv/cardiac_images/resolve/main/train_images.tfrecords"
|
| 16 |
+
VAL_URL = "https://huggingface.co/datasets/louiecerv/cardiac_images/resolve/main/val_images.tfrecords"
|
| 17 |
+
|
| 18 |
+
# Use a persistent temp directory
|
| 19 |
+
tmpdir = tempfile.gettempdir()
|
| 20 |
+
|
| 21 |
+
# Function to download a file with progress display
|
| 22 |
+
def download_file(url, local_filename, target_dir):
|
| 23 |
+
os.makedirs(target_dir, exist_ok=True)
|
| 24 |
+
filepath = os.path.join(target_dir, local_filename)
|
| 25 |
+
|
| 26 |
+
if os.path.exists(filepath):
|
| 27 |
+
st.write(f"File already exists: {filepath}")
|
| 28 |
+
return filepath
|
| 29 |
+
|
| 30 |
+
with requests.get(url, stream=True) as r:
|
| 31 |
+
r.raise_for_status()
|
| 32 |
+
total_size = int(r.headers.get('content-length', 0))
|
| 33 |
+
|
| 34 |
+
progress_bar = st.empty() # Create a placeholder
|
| 35 |
+
|
| 36 |
+
with open(filepath, 'wb') as f:
|
| 37 |
+
downloaded_size = 0
|
| 38 |
+
for chunk in r.iter_content(chunk_size=8192):
|
| 39 |
+
if chunk:
|
| 40 |
+
f.write(chunk)
|
| 41 |
+
downloaded_size += len(chunk)
|
| 42 |
+
progress_percent = int(downloaded_size / total_size * 100)
|
| 43 |
+
progress_bar.progress(progress_percent, text=f"Downloading {local_filename}...")
|
| 44 |
+
|
| 45 |
+
return filepath
|
| 46 |
+
|
| 47 |
+
# Download only if files are missing
|
| 48 |
+
train_file_path = download_file(TRAIN_URL, TRAIN_FILE, tmpdir)
|
| 49 |
+
val_file_path = download_file(VAL_URL, VAL_FILE, tmpdir)
|
| 50 |
+
|
| 51 |
+
# Dictionary describing the fields stored in TFRecord
|
| 52 |
+
image_feature_description = {
|
| 53 |
+
'height': tf.io.FixedLenFeature([], tf.int64),
|
| 54 |
+
'width': tf.io.FixedLenFeature([], tf.int64),
|
| 55 |
+
'depth': tf.io.FixedLenFeature([], tf.int64),
|
| 56 |
+
'name': tf.io.FixedLenFeature([], tf.string),
|
| 57 |
+
'image_raw': tf.io.FixedLenFeature([], tf.string),
|
| 58 |
+
'label_raw': tf.io.FixedLenFeature([], tf.string),
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
# Helper function to parse the image and label data from TFRecord
|
| 62 |
+
def _parse_image_function(example_proto):
|
| 63 |
+
return tf.io.parse_single_example(example_proto, image_feature_description)
|
| 64 |
+
|
| 65 |
+
# Function to read and decode an example from the dataset
|
| 66 |
+
@tf.function
|
| 67 |
+
def read_and_decode(example):
|
| 68 |
+
image_raw = tf.io.decode_raw(example['image_raw'], tf.int64)
|
| 69 |
+
image_raw.set_shape([65536])
|
| 70 |
+
image = tf.reshape(image_raw, [256, 256, 1])
|
| 71 |
+
|
| 72 |
+
image = tf.cast(image, tf.float32) * (1. / 1024)
|
| 73 |
+
|
| 74 |
+
label_raw = tf.io.decode_raw(example['label_raw'], tf.uint8)
|
| 75 |
+
label_raw.set_shape([65536])
|
| 76 |
+
label = tf.reshape(label_raw, [256, 256, 1])
|
| 77 |
+
|
| 78 |
+
return image, label
|
| 79 |
+
|
| 80 |
+
# Load and parse datasets
|
| 81 |
+
raw_training_dataset = tf.data.TFRecordDataset(train_file_path)
|
| 82 |
+
raw_val_dataset = tf.data.TFRecordDataset(val_file_path)
|
| 83 |
+
|
| 84 |
+
parsed_training_dataset = raw_training_dataset.map(_parse_image_function)
|
| 85 |
+
parsed_val_dataset = raw_val_dataset.map(_parse_image_function)
|
| 86 |
+
|
| 87 |
+
# Prepare datasets
|
| 88 |
+
tf_autotune = tf.data.experimental.AUTOTUNE
|
| 89 |
+
train = parsed_training_dataset.map(read_and_decode, num_parallel_calls=tf_autotune)
|
| 90 |
+
val = parsed_val_dataset.map(read_and_decode)
|
| 91 |
+
|
| 92 |
+
BUFFER_SIZE = 10
|
| 93 |
+
BATCH_SIZE = 1
|
| 94 |
+
|
| 95 |
+
train_dataset = train.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
|
| 96 |
+
train_dataset = train_dataset.prefetch(buffer_size=tf_autotune)
|
| 97 |
+
test_dataset = val.batch(BATCH_SIZE)
|
| 98 |
+
|
| 99 |
+
st.write(train_dataset)
|
| 100 |
+
|
| 101 |
+
def display(display_list):
|
| 102 |
+
fig = plt.figure(figsize=(10, 10))
|
| 103 |
+
title = ['Input Image', 'Label']
|
| 104 |
+
|
| 105 |
+
for i in range(len(display_list)):
|
| 106 |
+
ax = fig.add_subplot(1, len(display_list), i + 1)
|
| 107 |
+
display_resized = tf.reshape(display_list[i], [256, 256])
|
| 108 |
+
ax.set_title(title[i])
|
| 109 |
+
ax.imshow(display_resized, cmap='gray')
|
| 110 |
+
ax.axis('off')
|
| 111 |
+
|
| 112 |
+
st.pyplot(fig)
|
| 113 |
+
|
| 114 |
+
# Streamlit app interface
|
| 115 |
+
st.title("Cardiac Images Dataset")
|
| 116 |
+
|
| 117 |
+
# Display sample images
|
| 118 |
+
for image, label in train.take(2):
|
| 119 |
+
sample_image, sample_label = image, label
|
| 120 |
+
display([sample_image, sample_label])
|
| 121 |
+
|
| 122 |
+
tf.keras.backend.clear_session()
|
| 123 |
+
|
| 124 |
+
# set up the model architecture
|
| 125 |
+
model = tf.keras.models.Sequential([
|
| 126 |
+
Flatten(input_shape=[256, 256, 1]),
|
| 127 |
+
Dense(64, activation='relu'),
|
| 128 |
+
Dense(256*256*2, activation='softmax'),
|
| 129 |
+
Reshape((256, 256, 2))
|
| 130 |
+
])
|
| 131 |
+
|
| 132 |
+
# specify how to train the model with algorithm, the loss function and metrics
|
| 133 |
+
model.compile(
|
| 134 |
+
optimizer='adam',
|
| 135 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
| 136 |
+
metrics=['accuracy'])
|
| 137 |
+
|
| 138 |
+
# Capture the model summary
|
| 139 |
+
model_summary = StringIO()
|
| 140 |
+
model.summary(print_fn=lambda x: model_summary.write(x + '\n'))
|
| 141 |
+
|
| 142 |
+
# Display the model summary in Streamlit
|
| 143 |
+
st.markdown(model_summary.getvalue())
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
datasets
|
| 3 |
+
tensorflow
|
| 4 |
+
pandas
|
| 5 |
+
matplotlib
|