Spaces:
Sleeping
Sleeping
save
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import tempfile
|
|
6 |
import shutil
|
7 |
import streamlit as st
|
8 |
from PIL import Image
|
9 |
-
from PyPDF2 import PdfReader
|
10 |
import fitz # PyMuPDF
|
11 |
from openai import OpenAI
|
12 |
|
@@ -14,113 +13,122 @@ from openai import OpenAI
|
|
14 |
api_key = os.getenv("OPENAI_API_KEY")
|
15 |
client = OpenAI(api_key=api_key)
|
16 |
|
17 |
-
def
|
|
|
|
|
|
|
18 |
try:
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
except Exception as e:
|
49 |
-
st.error(f"An error occurred during
|
50 |
-
return "", []
|
51 |
|
|
|
52 |
|
53 |
def generate_ai_response(text_content, image_urls, text_prompt):
|
54 |
try:
|
55 |
-
# Construct the messages list
|
56 |
if image_urls:
|
57 |
messages = [
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
else:
|
61 |
-
messages = [
|
62 |
-
{"role": "user", "content": f"{text_prompt} Analyze the text: {text_content}"}
|
63 |
-
]
|
64 |
|
65 |
-
# Create a streaming response
|
66 |
response = client.chat.completions.create(
|
67 |
-
model="gpt-4o-mini",
|
68 |
-
messages=messages,
|
69 |
-
max_tokens=2048,
|
70 |
-
stream=True,
|
71 |
)
|
72 |
return response
|
73 |
|
74 |
except Exception as e:
|
75 |
st.error(f"An error occurred during AI response generation: {e}")
|
|
|
76 |
|
77 |
def main():
|
78 |
text_content = ""
|
79 |
image_urls = []
|
80 |
|
81 |
-
st.title("Multimodal
|
82 |
|
83 |
-
|
84 |
-
if
|
85 |
-
# Save the uploaded PDF to a temporary directory
|
86 |
temp_dir = tempfile.mkdtemp()
|
87 |
-
|
88 |
-
with open(
|
89 |
-
f.write(
|
90 |
|
91 |
-
text_content, image_urls =
|
92 |
|
93 |
-
|
94 |
-
|
|
|
95 |
|
96 |
if image_urls:
|
97 |
st.subheader("Extracted Images")
|
98 |
for img_url in image_urls:
|
99 |
st.image(img_url, caption="Extracted Image", use_container_width=True)
|
100 |
|
101 |
-
# Clean up the temporary directory
|
102 |
shutil.rmtree(temp_dir)
|
103 |
|
104 |
text_prompt = st.text_area("Enter a text prompt for the AI model:", "")
|
105 |
|
106 |
if st.button("Generate Response"):
|
|
|
|
|
|
|
107 |
|
108 |
response_placeholder = st.empty()
|
109 |
response_text = ""
|
110 |
|
111 |
with st.spinner("Processing..."):
|
112 |
response = generate_ai_response(text_content, image_urls, text_prompt)
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
116 |
for chunk in response:
|
117 |
if chunk.choices[0].delta.content:
|
118 |
delta_content = chunk.choices[0].delta.content
|
119 |
response_text += delta_content
|
120 |
response_placeholder.write(response_text)
|
121 |
|
122 |
-
|
123 |
-
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
-
main()
|
|
|
6 |
import shutil
|
7 |
import streamlit as st
|
8 |
from PIL import Image
|
|
|
9 |
import fitz # PyMuPDF
|
10 |
from openai import OpenAI
|
11 |
|
|
|
13 |
api_key = os.getenv("OPENAI_API_KEY")
|
14 |
client = OpenAI(api_key=api_key)
|
15 |
|
16 |
+
def extract_text_and_images(file_path):
|
17 |
+
text_content = ""
|
18 |
+
image_urls = []
|
19 |
+
|
20 |
try:
|
21 |
+
extension = os.path.splitext(file_path)[1].lower()
|
22 |
+
|
23 |
+
if extension == ".pdf":
|
24 |
+
doc = fitz.open(file_path)
|
25 |
+
for page_index in range(len(doc)):
|
26 |
+
page = doc.load_page(page_index)
|
27 |
+
image_list = page.get_images()
|
28 |
+
for img_index, img in enumerate(image_list):
|
29 |
+
xref = img[0]
|
30 |
+
base_image = doc.extract_image(xref)
|
31 |
+
image_bytes = base_image["image"]
|
32 |
+
image = Image.open(BytesIO(image_bytes))
|
33 |
+
image.thumbnail((512, 512))
|
34 |
+
|
35 |
+
buffered = io.BytesIO()
|
36 |
+
image.save(buffered, format="jpeg") # Force JPEG for PDF images
|
37 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
38 |
+
data_url = f"data:image/jpeg;base64,{img_str}"
|
39 |
+
image_urls.append(data_url)
|
40 |
+
|
41 |
+
text_content += page.get_text("text") or ""
|
42 |
+
|
43 |
+
elif extension in (".jpg", ".jpeg", ".png"):
|
44 |
+
image = Image.open(file_path)
|
45 |
+
image.thumbnail((512, 512))
|
46 |
+
|
47 |
+
buffered = io.BytesIO()
|
48 |
+
image_format = "jpeg" if extension in (".jpg", ".jpeg") else "png"
|
49 |
+
image.save(buffered, format=image_format)
|
50 |
+
|
51 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
52 |
+
image_urls.append(f"data:image/{image_format};base64,{img_str}")
|
53 |
+
|
54 |
+
else:
|
55 |
+
st.error(f"Unsupported file type: {extension}")
|
56 |
+
|
57 |
except Exception as e:
|
58 |
+
st.error(f"An error occurred during file processing: {e}")
|
|
|
59 |
|
60 |
+
return text_content, image_urls
|
61 |
|
62 |
def generate_ai_response(text_content, image_urls, text_prompt):
|
63 |
try:
|
|
|
64 |
if image_urls:
|
65 |
messages = [
|
66 |
+
{"role": "user", "content": ["type": "text": f"Perform the task {text_prompt} on the provided images)",
|
67 |
+
*[{"type": "image_url", "image_url": {"url": url}} for url in image_urls]]}
|
68 |
+
]
|
69 |
+
|
70 |
else:
|
71 |
+
messages = [{"role": "user", "content": f"{text_prompt} Analyze the text: {text_content}"}]
|
|
|
|
|
72 |
|
|
|
73 |
response = client.chat.completions.create(
|
74 |
+
model="gpt-4o-mini", messages=messages, max_tokens=2048, stream=True
|
|
|
|
|
|
|
75 |
)
|
76 |
return response
|
77 |
|
78 |
except Exception as e:
|
79 |
st.error(f"An error occurred during AI response generation: {e}")
|
80 |
+
return None
|
81 |
|
82 |
def main():
|
83 |
text_content = ""
|
84 |
image_urls = []
|
85 |
|
86 |
+
st.title("Multimodal File Processing using GPT-4 Turbo Model")
|
87 |
|
88 |
+
uploaded_file = st.file_uploader("Upload a File (PDF, JPG, PNG, JPEG)", type=None)
|
89 |
+
if uploaded_file is not None:
|
|
|
90 |
temp_dir = tempfile.mkdtemp()
|
91 |
+
file_path = os.path.join(temp_dir, uploaded_file.name)
|
92 |
+
with open(file_path, "wb") as f:
|
93 |
+
f.write(uploaded_file.getvalue())
|
94 |
|
95 |
+
text_content, image_urls = extract_text_and_images(file_path)
|
96 |
|
97 |
+
if text_content:
|
98 |
+
st.subheader("Extracted Text")
|
99 |
+
st.text(text_content)
|
100 |
|
101 |
if image_urls:
|
102 |
st.subheader("Extracted Images")
|
103 |
for img_url in image_urls:
|
104 |
st.image(img_url, caption="Extracted Image", use_container_width=True)
|
105 |
|
|
|
106 |
shutil.rmtree(temp_dir)
|
107 |
|
108 |
text_prompt = st.text_area("Enter a text prompt for the AI model:", "")
|
109 |
|
110 |
if st.button("Generate Response"):
|
111 |
+
if not text_prompt:
|
112 |
+
st.warning("Please enter a text prompt.")
|
113 |
+
return
|
114 |
|
115 |
response_placeholder = st.empty()
|
116 |
response_text = ""
|
117 |
|
118 |
with st.spinner("Processing..."):
|
119 |
response = generate_ai_response(text_content, image_urls, text_prompt)
|
120 |
+
|
121 |
+
if response is None:
|
122 |
+
st.error("There was an issue contacting the OpenAI API. Please check your API key and try again.")
|
123 |
+
return
|
124 |
+
|
125 |
for chunk in response:
|
126 |
if chunk.choices[0].delta.content:
|
127 |
delta_content = chunk.choices[0].delta.content
|
128 |
response_text += delta_content
|
129 |
response_placeholder.write(response_text)
|
130 |
|
131 |
+
st.success("Response generated successfully!")
|
|
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
+
main()
|