File size: 4,462 Bytes
f28ca64
 
 
 
 
b385ac2
 
f28ca64
b385ac2
 
 
 
 
 
 
 
 
 
 
 
 
f28ca64
 
 
 
 
 
 
 
 
 
 
 
 
b385ac2
f28ca64
 
 
 
b385ac2
 
 
 
f28ca64
b385ac2
f28ca64
 
 
 
 
 
 
 
b385ac2
f28ca64
107c53d
f28ca64
 
 
107c53d
f28ca64
107c53d
f28ca64
 
 
 
107c53d
 
 
 
 
 
 
 
 
 
 
 
f28ca64
 
 
 
 
 
 
 
107c53d
f28ca64
 
 
 
 
 
 
 
 
 
 
 
 
b385ac2
0a7ea0e
b385ac2
0a7ea0e
 
b385ac2
 
 
 
107c53d
 
 
 
0a7ea0e
107c53d
 
0a7ea0e
107c53d
 
 
0a7ea0e
107c53d
 
f28ca64
107c53d
0a7ea0e
f28ca64
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import streamlit as st
import os
import google.generativeai as genai
import json
from PIL import Image
import re
import json

# Define constants
TEXT_PROMPT = """Use the provided document. Read the list of quadratic equations. 
Return your response as a JSON list. Do not include any extra text, explanations, or backslashes.

Example JSON output:
[
  "x^2 - 5x + 6 = 0",
  "2x^2 + 3x - 1 = 0",
  "x^2 - 9 = 0",
  "3x^2 - 2x + 4 = 0",
  "x^2 + 8x + 15 = 0"
]
"""

MODEL_ID = "gemini-2.0-flash-exp"  # Keep the model ID as is
try:
    api_key = os.getenv("GEMINI_API_KEY")
    model_id = MODEL_ID
    genai.configure(api_key=api_key)
except Exception as e:
    st.error(f"Error: {e}")
    st.stop()

model = genai.GenerativeModel(MODEL_ID)
chat = model.start_chat()

def get_local_file_path(img_file="problem1.png"):
    """
    Returns the path to the local PDF file.
    """
    try:
        file_path = os.path.join("problems", img_file)
        if not os.path.exists(file_path):
            raise FileNotFoundError(f"{file_path} does not exist.")
        return file_path
    except Exception as e:
        st.error(f"Failed to find the local file: {e}")
        st.stop()  # Stop if the file is not found

# Initialize conversation history in Streamlit session state
if "conversation_history" not in st.session_state:
    st.session_state.conversation_history = []
if "uploaded_file_part" not in st.session_state:  # Store the file *part*
    st.session_state.uploaded_file_part = None
if "uploaded_pdf_path" not in st.session_state:
    st.session_state.uploaded_pdf_path = get_local_file_path()

def multimodal_prompt(pdf_path, text_prompt, file_type="PDF"):
    """
    Sends a multimodal prompt to Gemini, handling file uploads efficiently.
    Args:
        pdf_path: The path to the file (PDF or image).
        text_prompt: The text prompt for the model.
        file_type: "PDF" or "image" to specify the file type.
    Returns:
        The model's response as a string, or an error message.
    """
    try:
        if file_type == "PDF":
            mime_type = "application/pdf"
        elif file_type == "image":
            import mimetypes
            mime_type, _ = mimetypes.guess_type(pdf_path)
            if mime_type is None:
              return "Could not determine MIME type for image. Please check the file path or type."
        else:
            return "Invalid file_type. Must be 'PDF' or 'image'."

        if st.session_state.get("uploaded_file_part") is None:  # First time, upload
            pdf_part = genai.upload_file(pdf_path, mime_type=mime_type)
            st.session_state.uploaded_file_part = pdf_part
            prompt = [text_prompt, pdf_part]  # First turn includes the actual file
        else:  # Subsequent turns, reference the file
            prompt = [text_prompt, st.session_state.uploaded_file_part]  # Subsequent turns include the file reference

        response = chat.send_message(prompt)

        # Update conversation history
        st.session_state.conversation_history.append({"role": "user", "content": text_prompt, "has_file": True})
        st.session_state.conversation_history.append({"role": "assistant", "content": response.text})
        return response.text

    except Exception as e:
        return f"An error occurred: {e}"

# --- Main Page ---
st.title("📚❓Problem Solving Tutor")
about = """
**How to use this App**
Replace this placeholder with the actual text.
"""

with st.spinner("Loading the problem..."):
    if st.session_state.get("uploaded_pdf_path") is None:
        st.session_state.uploaded_pdf_path = get_local_file_path("problem1.png")

    filepath = st.session_state.uploaded_pdf_path
    response = multimodal_prompt(filepath, TEXT_PROMPT, file_type="image")

# --- Display the image ---
st.image(filepath, caption="Problem Image", use_container_width=True)

# Remove the ```json and ``` and extra spaces.
try:
    json_string = response.replace('```json', '').replace('```', '').strip()

    # Parse the JSON string into a Python list.
    problems_list = json.loads(json_string)

    # Iterate over the list and print each item using st.write().
    for item in problems_list:
        st.write(item)

except json.JSONDecodeError:
    st.write("Error: Invalid JSON format in the response.")
except Exception as e:
    st.write(f"An unexpected error occurred: {e}")


st.markdown("Visit our Hugging Face Space!")
st.markdown("© 2025 WVSU AI Dev Team 🤖 ✨")